
Using SoftICE®

Version 3.2

Technical support is available from our Technical Support Hotline or via
our FrontLine Support Web site.

Technical Support Hotline:
1-800-538-7822

FrontLine Support Web Site:
 http://frontline.compuware.com

This document and the product referenced in it are subject to the
following legends:

Access is limited to authorized users. Use of this product is subject to the
terms and conditions of the user’s License Agreement with Compuware
Corporation.

© 2004 Compuware Corporation. All rights reserved. Unpublished - rights
reserved under the Copyright Laws of the United States.

U.S. GOVERNMENT RIGHTS

Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in Compuware Corporation license agreement and
as provided in DFARS 227.7202-1(a) and 227.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii)(OCT 1988), FAR 12.212(a) (1995), FAR 52.227-19,
or FAR 52.227-14 (ALT III), as applicable. Compuware Corporation.

This product contains confidential information and trade secrets of
Compuware Corporation. Use, disclosure, or reproduction is prohibited
without the prior express written permission of Compuware Corporation.

DriverStudio, SoftICE Driver Suite, DriverNetworks, DriverWorks,
TrueCoverage, and DriverWorkbench are trademarks of Compuware
Corporation. BoundsChecker, SoftICE, and TrueTime are registered
trademarks of Compuware Corporation.

Acrobat® Reader copyright © 1987-2003 Adobe Systems Incorporated. All
rights reserved. Adobe, Acrobat, and Acrobat Reader are trademarks of
Adobe Systems Incorporated.

All other company or product names are trademarks of their respective
owners.

US Patent Nos.: Not Applicable.

Doc. 11577a
December 10, 2004

http://frontline.compuware.com

Table of Contents
Preface
Purpose of This Manual . xiii

What This Manual Covers . xiv

Conventions Used In This Manual . xvi

Accessibility . xvi

How to Use This Manual . xvii

Other Useful Documentation . xvii

Customer Assistance . xviii
For Non-Technical Issues . xviii
For Technical Issues . xviii

Chapter 1
Choosing Your SoftICE Version
SoftICE or Visual SoftICE? . 1

Single Machine Debugging: SoftICE . 2

Dual Machine Debugging: Visual SoftICE . 3

But Which One Should I Use? . 4

Chapter 2
Welcome to SoftICE
Product Overview . 7

Benefits of SoftICE . 7
How SoftICE is Implemented . 9

SoftICE User Interface . 9

About Symbol Loader . 11
 iii

Chapter 3
SoftICE Tutorial
Introduction . 13

Loading SoftICE . 14

Controlling the SoftICE Screen . 15
Moving and Resizing SoftICE Windows . 18

Overview of the Sample Software . 19

Building the Sample Code . 20

Launching the Application . 21

Tracing and Stepping through the Source Code . 23

Viewing and Editing Local Data . 24
Editing Local Data . 25

Setting Point-and-Shoot Breakpoints . 26
Setting a One-Shot Breakpoint . 26
Setting a Sticky Breakpoint . 27

Setting a Conditional Breakpoint . 29
Editing a Breakpoint . 29

Setting a Read-Write Memory Breakpoint . 30

Using SoftICE Informational Commands . 32

Using Symbols and Symbol Tables . 34

Using Symbol Loader . 36
Single File Mode . 37
Workspace View Mode . 38

A Word on Symbol Server Technology . 42

Chapter 4
Loading Code into SoftICE
Debugging Concepts . 43

Preparing to Debug Applications . 44
Preparing to Debug Device Drivers and VxDs . 44

Loading SoftICE . 45
Early Loading of SoftICE . 45
Loading SoftICE Manually . 46

Building Applications with Debug Information . 46

Using Symbol Loader to Translate and Load Files . 48

Modifying Module Settings . 49
Modifying General Settings . 50
Modifying Translation Settings . 51
Modifying Debugging Settings . 53
iv Using SoftICE

Specifying Modules and Files . 55
Modifying Source Files . 56

Deleting Symbol Tables . 58

Downloading Symbols from a Symbol Server . 60

Using Symbol Loader From an MS-DOS Prompt . 61

Using the Symbol Loader Command-Line Utility . 62
NMSYM Command Syntax . 63
Using NMSYM to Translate Symbol Information . 64
Using NMSYM to Load a Module and Symbol Information 68
Using NMSYM to Load Symbol Tables or Exports . 71
Using NMSYM to Unload Symbol Information . 72
Using NMSYM to Save History Logs . 73
Getting Information about NMSYM . 74

Chapter 5
Navigating Through SoftICE
Introduction . 75

Universal Video Driver . 76
Setting the Video Memory Size . 77

Popping Up the SoftICE Screen . 78

Disabling SoftICE at Startup . 78

Stopping SoftICE at Startup . 78

Using the SoftICE Screen . 79
Resizing the SoftICE Screen . 81
Controlling SoftICE Windows . 81
User-definable Pop-up Menus . 84
Inline Editing . 86
Copying and Pasting Data . 87
Entering Commands from the Mouse . 88
Obtaining Help . 89

Using the Command Window . 90
Scrolling the Command Window . 90
Entering Commands . 90
Recalling Commands . 93
Regular Expressions in SoftICE . 94
Using Run-time Macros . 96
Saving the Command Window History Buffer to a File 98
Associated Commands . 99

Using the Code Window . 99
Controlling the Code Window . 99
Viewing Information . 101
Table of Contents v

Entering Commands From the Code Window . 104

Using the Locals Window . 105
Controlling the Locals Window . 105
Expanding and Collapsing Stacks . 106
Associated Commands . 106

Using the Watch Window . 106
Controlling the Watch Window . 106
Setting an Expression to Watch . 107
Viewing Information . 108
Expanding and Collapsing Typed Expressions . 108
Associated Commands . 108

Using the Register Window . 108
Controlling the Register Window . 109
Viewing Information . 109
Editing Registers and Flags . 110
Associated Commands . 110

Using the Data Window . 111
Controlling the Data Window . 111
Viewing Information . 112
Changing the Memory Address and Format . 113
Editing Memory . 113
Assigning Expressions . 114
Associated Commands . 114

Using the Stack Window . 114

Using the Thread Window . 115
Controlling the Thread Window . 115

Using the Pentium III/IV Register Window . 116

Using the FPU Stack Window . 116
Viewing Information . 117

Chapter 6
Using SoftICE
Debugging Multiple Programs at Once . 119

Trapping Faults . 120
Ring 0 Driver Code (Kernel Mode Device Drivers) . 120
Ring 3 (32-bit) Protected Mode (Win32 Programs) . 121
Ring 3 (16-bit) Protected Mode (16-bit Windows Programs) 121
SoftICE Crash Dump Utility . 122

About Address Contexts . 126

Using INT 0x41 .DOT Commands . 127

Understanding Transitions From Ring 3 to Ring 0 . 129
vi Using SoftICE

Chapter 7
Using Breakpoints
Introduction . 131

Types of Breakpoints Supported by SoftICE . 132
Breakpoint Options . 133
Execution Breakpoints . 134
Memory Breakpoints . 135
Interrupt Breakpoints . 135
I/O Breakpoints . 137
Window Message Breakpoints . 138
Module Load/Unload Breakpoints . 139

Understanding Breakpoint Contexts . 139

Virtual Breakpoints . 140

Setting a Breakpoint Action . 140

Conditional Breakpoints . 141
Conditional Breakpoint Count Functions . 143
Using Local Variables in Conditional Expressions . 146
Referencing the Stack in Conditional Breakpoints . 147
Performance . 149
Duplicate Breakpoints . 149

Elapsed Time . 149

Breakpoint Statistics . 150

Referring to Breakpoints in Expressions . 150

Manipulating Breakpoints . 150

Using Embedded Breakpoints . 151

Chapter 8
Using Expressions
Expressions . 153

Using the Expression Evaluator . 154

Supported Operators . 154
Pointer Operations . 156
Operator Precedence . 157

Forming Expressions . 158
Registers . 158
Literals . 159
Symbols . 161
Symbol Sources and Search Order . 163
Table of Contents vii

Built-in Functions . 164
Eaddr Function . 166
Evalue Function . 167

Expression Evaluator Type System . 167
Results Types . 167
Typecasting . 168

Result Formats . 170

Chapter 9
Loading Symbols for System Components
Loading Export Symbols for DLLs and EXEs . 171

Using Unnamed Entry Points . 172

Using Export Names in Expressions . 173
Loading Exports Dynamically . 173

Using the Windows NT family Symbol Files with SoftICE 173

Using Windows 9x Symbol (.SYM) Files with SoftICE . 174

Chapter 10
Remote Debugging with SoftICE
Introduction . 175

Types of Remote Connections . 175

DSR Namespace Extension . 177
Remote Target State Icons . 179

Remote Debugging Details . 181
Specialized Network Drivers . 181
Universal Network Driver . 183
Serial Connection . 186
Modem . 188

SIREMOTE Utility (Host Computer) . 189

NET Command (Target Computer) . 190

Chapter 11
Customizing SoftICE
Modifying SoftICE Initialization Settings . 191

Modifying General Settings . 193
Initialization . 193
History Buffer Size . 194
Trace BufferSize (Windows 9x Only) . 194
Total RAM (Windows 9x Only) . 194
viii Using SoftICE

Display Diagnostic Messages . 194
Trap NMI . 195
Lowercase Disassembly . 195
Support Power Management . 195
Headless . 196
Enable SoftICE Public Interface . 196

Pre-Loading Symbols and Source Code . 196
Adding Symbol Files to the Symbols List . 197
Removing Symbols and Source Code Pre-Loading . 197
Reserving Symbol Memory . 197

Pre-Loading Exports . 198

Serial Debugging . 198
Configuring Remote Debugging with a Modem . 199

Configuring Network Debugging . 199
Requirements for Remote SoftICE Support . 200
Setting Up SoftICE for Remote Debugging . 200
Enabling Remote Debugging from the Target Side . 200
Starting the Remote Debugging Session . 202

Modifying Keyboard Mappings . 203
Command Syntax . 204
Modifying Function Keys . 204
Creating Function Keys . 204
Deleting Function Keys . 205
Restoring Function Keys . 205

Working with Persistent Macros . 205
Creating Persistent Macros . 206
Starting and Stopping Persistent Macros . 207

Setting Troubleshooting Options . 208
Disable Mouse Support . 208
Disable Num Lock and Caps Lock Programming . 208
Do Not Patch Keyboard Driver (Windows NT family Only) 209
Disable Mapping of Non-Present Pages . 209
Disable Pentium Support . 209
Disable Thread-Specific Stepping . 209

Specifying Advanced Options . 209
Table of Contents ix

Chapter 12
Exploring Windows NT
Overview . 211

Resources for Advanced Debugging . 212

Inside the Windows NT Kernel . 217
Managing the Intel Architecture . 218
Windows NT System Memory Map . 223

Win32 Subsystem . 231
Inside CSRSS . 231
USER and GDI Objects . 232
Process Address Space . 237
Heap API . 238

Appendix A
Error Messages

Appendix B
Supported Display Adapters

Appendix C
Troubleshooting SoftICE

Appendix D
Kernel Debugger Extensions

Appendix E
SoftICE and VMware
OS Support . 263

Hardware Support . 263

Setup/Installation . 264

Limitations and Restrictions . 264

Remote Debugging . 264

Configuration . 265

Mouse . 267

Universal Video Driver . 267
x Using SoftICE

Appendix F
SoftICE API Specification
The Purpose of Having a Public Interface and API . 269

Setting Up SoftICE for API Access . 270

Running the Sample Driver . 270

Setting Up Your Driver . 271

Checking for the Existence of SoftICE . 271

Using the SoftICE API . 272
API Calls from a Driver . 272
API Calls from a Ring3 Application . 273

API Definition . 273

Glossary . 243

Index . 245
Table of Contents xi

xii Using SoftICE

Preface
� Purpose of This Manual

� What This Manual Covers

� Conventions Used In This Manual

� Accessibility

� How to Use This Manual

� Other Useful Documentation

� Customer Assistance

Purpose of This Manual
Note: Unless stated otherwise, this document will use “Windows® 9x” to

refer to the Windows 95, Windows 98, and Windows Millennium
(Windows ME) operating systems (treated as a group); “the Windows
NT® family” will refer to the Windows NT, Windows 2000, Windows
XP, Windows Server 2003, and Longhorn operating systems. (Also,
unless stated otherwise, characteristics of Windows NT described in
this manual also apply to Windows 2000, Windows XP, Windows
Server 2003, and Longhorn.)

SoftICE® is an advanced, all-purpose debugger that can debug virtually
any type of code including applications, device drivers, EXEs, DLLs,
OCXs, and dynamic and static VxDs. Since many programmers prefer to
learn through hands on experience, this manual includes a tutorial that
leads you through the basics of debugging code.
 xiii

This manual is intended for programmers who want to use SoftICE to
debug code for Windows 9x and the WINDOWS NT family platforms.

Users of previous versions of SoftICE should read the Release Notes/
Readme documentation to see how this version of SoftICE differs from
previous versions.

This manual assumes that you are familiar with the Microsoft® Windows
interface and with software debugging concepts.

What This Manual Covers
This manual contains the following chapters and appendixes:

The Using SoftICE manual is organized as follows:

� Chapter 1, “Choosing Your SoftICE Version”

Explains the differences between SoftICE and its companion two-
machine debugger, Visual SoftICE.

� Chapter 2, “Welcome to SoftICE”

Briefly describes SoftICE components and features. Chapter 2 also
explains how to contact the Compuware Technical Support Center.

� Chapter 3, “SoftICE Tutorial”

Provides a hands-on tutorial that demonstrates the basics for
debugging code. Topics include tracing code, viewing the contents of
locals and structures, setting a variety of breakpoints, and viewing
the contents of symbol tables.

� Chapter 4, “Loading Code into SoftICE”

Explains how to use SoftICE Symbol Loader to load various types of
code into SoftICE.

� Chapter 5, “Navigating Through SoftICE”

Describes how to use the interface that SoftICE provides for code
debugging.

� Chapter 6, “Using SoftICE”

Provides information about trapping faults, address contexts, using
INT 0x41.DOT commands, and transitions from Ring-3 to Ring-0.

� Chapter 7, “Using Breakpoints”

Explains how to set breakpoints on program execution, on memory
location reads and writes, on interrupts, and on reads and writes to
the I/O ports.

� Chapter 8, “Using Expressions”

Explains how to form expressions to evaluate breakpoints.
xiv Using SoftICE

� Chapter 9, “Loading Symbols for System Components”

Explains how to load export symbols for DLLs and EXEs and how to
use symbol files with SoftICE.

� Chapter 10, “Remote Debugging with SoftICE ”

Explains how to establish a remote connection to operate SoftICE
from a remote PC.

� Chapter 11, “Customizing SoftICE”

Explains how to use the SoftICE configuration settings to customize
your SoftICE environment, pre-load symbols and exports, configure
remote debugging, modify keyboard mappings, create macro-
definitions, and set troubleshooting options.

� Chapter 12, “Exploring Windows NT”

Provides a quick overview of the Windows NT operating system.

� Appendix A, “Error Messages”

Explains the SoftICE error messages.

� Appendix B, “Supported Display Adapters”

Lists the display adapters that SoftICE supports.

� Appendix C, “Troubleshooting SoftICE”

Explains how to solve problems you might encounter.

� Appendix D, “Kernel Debugger Extensions”

Explains how to prepare a Kernel Debugger Extension for use with
SoftICE.

� Appendix E, “SoftICE and VMWare”

Explains the restrictions, limitations, and differences between
SoftICE running on a “virtual machine” and SoftICE running on a
real machine.

� Appendix F, “SoftICE API Specification”

Explains the process for defining a public interface allowing you to
add conditional code to your driver that will execute if SoftICE is
present.

� Glossary

� Index
 Preface xv

Conventions Used In This Manual
This book uses the following conventions to present information:

Accessibility
Prompted by federal legislation introduced in 1998 and Section 508 of
the U.S. Rehabilitation Act enacted in 2001, Compuware launched an
accessibility initiative to make its products accessible to all users,
including people with disabilities. This initiative addresses the special
needs of users with sight, hearing, cognitive, or mobility impairments.

Section 508 requires that all electronic and information technology
developed, procured, maintained, or used by the U.S. Federal
government be accessible to individuals with disabilities. To that end, the
World Wide Web Consortium (W3C) Web Accessibility Initiative (WAI)
has created a workable standard for online content.

Convention Description

Enter Indicates that you should type text, then press RETURN or
click OK.

Italics Indicates variable information. For example: library-name.

Monospaced text Used within instructions and code examples to indicate
characters you type on your keyboard.

Small caps Indicates a user-interface element, such as a button or
menu.

UPPERCASE Indicates directory names, file names, key words, and
acronyms.

Bold typeface Screen commands and menu names appear in bold
typeface. For example:
Choose Item Browser from the Tools menu.

Commands and file
names

Computer commands and file names appear in monospace
typeface. For example:
The Using SoftICE manual (Using SoftICE.pdf)
describes...

Variables Variables within computer commands and file names (for
which you must supply values appropriate for your
installation) appear in italic monospace type. For
example:
Enter http://servername/cgi-win/itemview.dll in
the Destination field.
xvi Using SoftICE

Compuware supports this initiative by committing to make its
applications and online help documentation comply with these
standards. For more information, refer to:

� W3C Web Accessibility Initiative (WAI) at www.W3.org/WAI
� Section 508 Standards at www.section508.gov
� Microsoft Accessibility Technology for Everyone at

www.microsoft.com/enable/

How to Use This Manual
The following table suggests the best starting point for using this manual
based on your level of experience debugging applications.

Other Useful Documentation
In addition to this manual, Compuware provides the following
documentation for SoftICE:

� SoftICE Command Reference

� Describes all the SoftICE commands in alphabetical order. Each
description provides the appropriate syntax and output for the
command as well as examples that highlight how to use it.

� SoftICE on-line Help

� SoftICE provides context-sensitive help for Symbol Loader and a help
line for SoftICE commands in the debugger.

� On-line documentation

Experience Suggested Starting Point

No experience using debuggers Perform the tutorial in Chapter 3.

Experience with other debuggers Read Chapter 4, “Loading Code into SoftICE.”
Then read Chapter 5, “Navigating Through
SoftICE.”

Experience using a previous
release of SoftICE

Read Chapter 1, “Product Overview,” to
learn about this version of SoftICE.
 Preface xvii

� Both the Using SoftICE manual and the SoftICE Command Reference are
available on line. To access the on-line version of these books, start
Acrobat Reader and open the Using SoftICE or the SoftICE Command
Reference PDF files.

Customer Assistance

For Non-Technical Issues

Customer Service is available to answer any questions you might have
regarding upgrades, serial numbers and other order fulfillment needs.
Customer Service is available from 8:30am to 5:30pm EST, Monday
through Friday. Call:

� In the U.S. and Canada: 1-888-283-9896

� International: +1 603 578-8103

For Technical Issues

Technical Support can assist you with all your technical problems, from
installation to troubleshooting. Before contacting Technical Support,
please read the relevant sections of the product documentation as well as
the Readme files for this product. You can contact Technical Support by:

� E-Mail: Include your serial number and send as many details as
possible to:

mailto:nashua.support@compuware.com

� World Wide Web: Submit issues and access additional support
services at:

http://frontline.compuware.com/nashua/

� Fax: Include your serial number and send as many details as possible
to:

1-603-578-8401

� Telephone: Telephone support is available as a paid* Priority
Support Service from 8:30am to 5:30pm EST, Monday through Friday.
Have product version and serial number ready.

� In the U.S. and Canada, call: 1-888-686-3427

� International customers, call: +1-603-578-8100

*Technical Support handles installation and setup issues free of charge.
xviii Using SoftICE

When contacting Technical Support, please have the following
information available:

� Product/service pack name and version.

� Product serial number.

� Your system configuration: operating system, network configuration,
amount of RAM, environment variables, and paths.

� The details of the problem: settings, error messages, stack dumps, and
the contents of any diagnostic windows.

� The details of how to reproduce the problem (if the problem is
repeatable).

� The name and version of your compiler and linker and the options
you used in compiling and linking.
 Preface xix

xx Using SoftICE

BETA REVIEW
Chapter 1

Choosing Your SoftICE Version
� SoftICE or Visual SoftICE?

� Single Machine Debugging: SoftICE

� Dual Machine Debugging: Visual SoftICE

� But Which One Should I Use?

SoftICE or Visual SoftICE?
DriverStudio and SoftICE Driver Suite include two unique debuggers:
SoftICE, the single-machine debugger, and Visual SoftICE, a new GUI-
based dual-machine debugger. Depending on the debugging task you are
facing, it may or may not be obvious which debugger you should use.
This section will help you decide which tool best fits your needs.

In some situations, your choice will be simple: some processor
architectures and operating systems are only supported by one of the two
debuggers. Table shows the platforms supported by SoftICE and Visual
SoftICE.

Table 1-1. Supported Platforms

Processor Operating System SoftICE Visual SoftICE

Intel x86 and
compatibles

MS-DOS, Windows 3.0/3.1/3.11,
Windows 9x

Yes No

Intel x86 and
compatibles

Windows NT 3.x, Windows NT 4.0 Yes No

Intel x86 and
compatibles

Windows 2000, Windows XP,
Advanced Server, Windows Server
2003

Yes Yes

Intel Itanium1
and Itanium2
(IA64)

Windows XP 64bit Ed., Windows
Server 2003 IA64 64-bit Ed.

No Yes
 1

BETA REVIEW
If you are debugging on DOS or the Windows 9x family, SoftICE is your
only choice. If you are working on a 64-bit architecture, only Visual
SoftICE will do. If your target is Windows and the x86 or compatible
architecture, either debugger will work. In that case, read on for an
overview of the differences between these two tools.

Single Machine Debugging: SoftICE
SoftICE is a single-machine debugger, meaning simply that all of its code
runs on the same machine as the code being debugged. When running,
SoftICE has two basic states: popped up, where the SoftICE window is
displayed, and popped down, where SoftICE is invisible and the machine
runs as normal. When SoftICE is popped up, all processes on the
machine are stopped, the operating system does not run, and SoftICE
commands are available to the user. SoftICE can pop up in response to
user input (the CTRL-D hotkey), breakpoints, exceptions, or system
crashes. SoftICE is popped down by issuing one of the go or exit
commands, at which point the SoftICE screen is erased and all processes
in the system resume operation.

The fact that SoftICE halts the operating system when it is popped up
means that it must operate without making use of any of the OS services.
This has a number of consequences. For one, the SoftICE user interface
does not resemble that of a normal Windows application. Although
SoftICE supports keyboard and mouse input, it does not use Windows
fonts, nor does its interface contain the enhancements common to
Windows applications. In addition, SoftICE cannot assume that it is safe
to perform disk access whenever it is popped up, so loading or saving
symbol information and SoftICE data is done through companion
applications, such as Symbol Loader (Loader32.exe).

AMD Opteron,
Athlon64
(AMD64 / K8)

Windows XP 64bit Ed., Windows
Server 2003 Extended 64-bit Ed.

No Yes

Intel EM64T
(Preliminary)

Windows XP 64bit Ed., Windows
Server 2003 Extended 64-bit Ed.

No Yes

Table 1-1. Supported Platforms (Continued)

Processor Operating System SoftICE Visual SoftICE
2 Using SoftICE

BETA REVIEW
Another consequence of the SoftICE single machine architecture is that
the interface is extremely fast. All the data in the machine is directly
accessible to the debugger, so even tasks involving large amounts of
memory access are completed with no noticeable delay.

Because symbols and source code must be loaded ahead of time, SoftICE
uses a packaged format for symbols called NMS files. Symbols, translated
from the DBG or PDB files output by the linker, can be combined with all
or some of the source files used to build the module, and loaded into
SoftICE all at once using Symbol Loader or its command-line equivalent,
NMSYM. In addition, the new Microsoft Symbol Servers can be accessed
using Symbol Retriever utility, which is also capable of translating
symbols into NMS files and loading them into SoftICE. These tools make
the necessary management of symbols for SoftICE as simple as possible.

SoftICE supports a subset of the available KD Extensions defined by
Microsoft. Because the operating system is stopped when the debugger is
popped up, SoftICE does not support all the available KD Extensions,
since it is not able to make system calls.

There are certain situations where debugging on a single machine is
impractical. For instance, if your project is a display driver that is not yet
working properly, SoftICE may not be able to display its output. SoftICE
does include support for remote debugging, which can be used in many
of these situations to redirect the SoftICE input and output over a serial
or IP networking link. The remote application in this case is SIRemote,
which simply acts as a dumb terminal for SoftICE. The operation of the
debugger is not otherwise changed by running remotely.

Dual Machine Debugging: Visual SoftICE
Visual SoftICE, on the other hand, is a dual-machine debugger. The user
interface and nearly all of the interpretive code runs on the “master”
machine; the code to be debugged runs alongside a small core of
debugging functions on the “target” machine. Master and target
machines are connected via a transport, which can be a serial cable, IP
network interface device, or IEEE 1394 connection.
 Chapter 1� Choosing Your SoftICE Version 3

BETA REVIEW
Because the master machine is never stopped by the debugger, the Visual
SoftICE user interface is free to take advantage of all of the usual
Windows UI devices. The Visual SoftICE user interface will be instantly
familiar to anyone who has used sophisticated Windows programs
before; in addition, the command set has been duplicated (with a few
exceptions) from the original SoftICE, so SoftICE users should find much
that is familiar about Visual SoftICE as well.

Visual SoftICE is also able to load symbol information on-the-fly at any
time – including retrieving symbols from a Symbol Server site – so this
task is generally handled automatically by the debugger. This frees the
user from the necessity of manually specifying symbol files to be loaded
by the debugger, although that option is still available.

Visual SoftICE supports loading and examining crashdump and
minidump files directly, a feature not found in SoftICE (the DriverStudio
DriverWorkbench Application also supports this).

Visual SoftICE also provides complete support for the Microsoft KD
Extensions, including those that will not run on SoftICE for architectural
reasons.

But Which One Should I Use?
If your project falls into the wide overlap between SoftICE and Visual
SoftICE, you are probably still wondering which debugger is best for you.
Obviously, there is not always a single right answer to this question, but
in the remainder of this section we will try to cover some of the scenarios
where one debugger might be favored over the other. We are down to
guidelines here, though; devotees of either debugger will be quick to
point out that their favorite still has advantages, even in cases where the
other might appear to be the better choice. We encourage you to try
them both, and consider them two similar but distinct tools in your
debugging toolbox.

� If you prefer a full-featured Windows GUI, you will probably want to
use Visual SoftICE. The SoftICE interface is fast and powerful, but it
has no GUI, and it takes some getting used to.

� If you are debugging a crashdump file, try Visual SoftICE. You will be
able to use many of the debugging commands you are already
familiar with, and Visual SoftICE can reveal more information than
the crashdump functionality within DriverWorkbench.
4 Using SoftICE

BETA REVIEW
� If you need complete KD Extensions support, use Visual SoftICE.
SoftICE provides a limited subset of KD Extensions, but not the
whole set.

� If you are debugging a network driver, and you are concerned that
the Visual SoftICE IP transport layer might affect the results, use
SoftICE. Conversely, if you are debugging a video driver’s mode
initialization, a Direct3D or streaming app or driver, or input device
driver, try Visual SoftICE.

� If you want direct access to BoundsChecker events from within the
debugger, use SoftICE.

� If you do not have access to a second machine, or you are traveling
and debugging code on a laptop, use SoftICE.

� If you need the ability to package source code together with symbolic
debugging information in NMS files, use SoftICE. Both debuggers are
capable of loading source code separately from symbol files, of
course.

And if you are still confused about which debugger to use, skim through
the documentation for both of them. Chances are that something you
see there will point you in the right direction.
 Chapter 1� Choosing Your SoftICE Version 5

BETA REVIEW
6 Using SoftICE

BETA REVIEW
Chapter 2

Welcome to SoftICE
� Product Overview

� How SoftICE is Implemented

� About Symbol Loader

Product Overview
SoftICE is available for Windows 9x and the Windows NT family. SoftICE
consists of the SoftICE kernel-mode debugger and the Symbol Loader
utility. The SoftICE debugger (SoftICE) is an advanced, all-purpose
debugger that can debug virtually any type of code including interrupt
routines, processor level changes, and I/O drivers. The Symbol Loader
utility (Symbol Loader) loads the debug information for your module
into SoftICE, maintains the SoftICE initialization settings, and lets you
save the contents of the SoftICE history buffer to a file. The following
sections briefly describe SoftICE and Symbol Loader.

Benefits of SoftICE

SoftICE combines the power of a hardware debugger with the ease of use
of a symbolic debugger. It provides hardware-like breakpoints and sticky
breakpoints that follow the memory as the operating system discards,
reloads, and swaps pages. SoftICE displays your source code as you debug,
and lets you access your local and global data through their symbolic
names.

Some of the major benefits SoftICE provides include the following:

� Source level debugging of 32-bit (Win32) applications, the Windows
NT family device drivers (both kernel and user mode), Windows 9x
drivers, VxDs, 16-bit Windows programs, and DOS programs.
 7

BETA REVIEW
� Debugging virtually any code, including interrupt routines and the
Windows 9x and the Windows NT family kernels.

� Setting real-time breakpoints on memory reads/writes, port reads/
writes, and interrupts.

� Setting breakpoints on Windows messages.

� Setting breakpoints on module loads and unloads.

� Setting conditional breakpoints and breakpoint actions.

� Displaying elapsed time to the breakpoint trigger using the Pentium
clock counter.

� Kernel-level debugging on one machine.

� Displaying internal Windows 9x and Windows NT family
information, such as:

� Complete thread and process information

� Virtual memory map of a process

� Kernel-mode entry points

� Windows NT object directory

� Complete driver object and device object information

� Win32 heaps

� Structured Exception Handling (SEH) frames

� DLL exports

� Using the WHAT command to identify a name or an expression, if it
evaluates to a known type.

� Popping up the SoftICE screen automatically when an unhandled
exception occurs.

� Using SoftICE to connect by modem, network, serial, or Internet to a
remote user. This enables you to diagnose a remote user’s problem,
such as a system crash.

� Supporting the MMX, SSE, and SSE2 instruction set extensions.

� Creating user-defined macros.
8 Using SoftICE

BETA REVIEW
How SoftICE is Implemented

SoftICE for Windows 9x and SoftICE for the Windows NT family are
implemented in slightly different ways. SoftICE for Windows 9x
comprises two VxDs, while SoftICE for the Windows NT family
comprises several NT kernel device drivers. This is shown in Table 2-1 on
page 9.

Table 2-1. SoftICE Implementation Methods

Note: SoftICE for the Windows NT family must be loaded by the operating
system because it is implemented as a device driver. If you need to
debug a boot mode driver, you will need to take an additional step of
setting up Siwsym and manually changing the load order of SoftICE.
You will not be able to debug the NTOSKRNL initialization code,and
any Windows NT family loader or NTDETECT code. For additional
information on Siwsym, please read the included siwsym.txt file.

SoftICE User Interface
SoftICE provides a consistent interface for debugging applications across
all platforms. The SoftICE user interface is designed to be functional
without compromising system robustness. For SoftICE to pop up at any
time without disturbing the system state, it must access the hardware
directly to perform its I/O.

SoftICE uses a full-screen character-oriented display window, as shown in
Figure 2-1 on page 10.

Refer to Chapter 4: Navigating Through SoftICE on page 47 for more
information about using the SoftICE screen.

Windows
9x (VxD) Windows ME

Windows NT family
(NT Family Kernel
Device Driver)

Description

WINICE.EXE WINICE.EXE NTICE.SYS Provides the debugger.

SIWVID.386 SIWVID.386 SIWVID.SYS Provides video support
for your PC.

WINICE.VXD

DEBUGGER.EXE
 Chapter 2� Welcome to SoftICE 9

BETA REVIEW
Figure 2-1. SoftICE Display Window
10 Using SoftICE

BETA REVIEW
About Symbol Loader
Symbol Loader (Figure 2-2) is a graphical utility that extracts debug
symbol information from your device drivers, EXEs, DLLs, OCXs, and
dynamic and static VxDs and loads it into SoftICE. This utility lets you
do the following:

� Customize the type and amount of information it loads to suit your
debugging requirements.

� Provides a Workspace and Session environment.
� Load and unload entire groups of symbol files, translations, and

links.
� Automatically start your application and set a breakpoint at its entry

point.
� Save your debugging session to a file.

Figure 2-2. SoftICE Symbol Loader

Symbol Loader also supports a command line interface that lets you use
many of its features from a DOS prompt. Thus, you can automate many
of the most common tasks it performs. Additionally, SoftICE provides a
separate command-line utility (NMSYM) that lets you automate the
creation of symbol information from a batch file.
 Chapter 2� Welcome to SoftICE 11

BETA REVIEW
12 Using SoftICE

BETA REVIEW
Chapter 3

SoftICE Tutorial
� Introduction

� Loading SoftICE

� Controlling the SoftICE Screen

� Overview of the Sample Software

� Building the Sample Code

� Launching the Application

� Launching the Application

� Tracing and Stepping through the Source Code

� Viewing and Editing Local Data

� Setting Point-and-Shoot Breakpoints

� Setting a Conditional Breakpoint

� Setting a Read-Write Memory Breakpoint

� Using SoftICE Informational Commands

� Using Symbols and Symbol Tables

� Using Symbol Loader

� A Word on Symbol Server Technology

Introduction
This tutorial gives you hands-on experience debugging Windows
software, and teaches you the fundamental steps for debugging
applications and drivers. During this debugging session, you will learn
how to:

� Load SoftICE

� Build the sample code
 13

BETA REVIEW
� Load the source and symbol files

� Trace and step through source code and assembly language

� View local data and structures

� Change memory

� Set point-and-shoot breakpoints

� Use SoftICE informational commands to explore the state of the
application/machine/OS

� Work with symbols and symbol tables

� Modify a breakpoint to use a conditional expression

Each section in the tutorial builds upon the previous sections, so you
should perform them in order.

This tutorial uses the NMDEMO application. Once you install
DriverStudio, NMDEMO is located in:

\program files\compuware\driverstudio\softice\examples

You can substitute a different sample application or an application of
your own design. The debugging principles and features of SoftICE used
in this tutorial apply to most applications.

Loading SoftICE
If you are running SoftICE in Boot, System, or Automatic mode, it
automatically loads when you start or reboot your PC. If you are running
SoftICE in Manual or Disabled mode, it does not load automatically. To
change the mode in which you have SoftICE configured to load, access
the Startup screen in the Settings utility, and select the desired mode
from the SoftICE drop-down list (See Figure 4-1 on page 46). If SoftICE
does not load automatically, do one of the following:

� Select START SOFTICE from the Compuware DriverStudio/Debug
group

� At the Windows command prompt, enter the command:
NET START NTICE

Note: Once you load SoftICE, you cannot deactivate it until you reboot
your PC.
14 Using SoftICE

BETA REVIEW
Controlling the SoftICE Screen
Before you start debugging, take a few minutes to explore and customize
the SoftICE screen (see Figure 3-2 on page 17).

You can pop SoftICE up at any time by pressing <Ctrl>-D. The SoftICE
screen consists of a single panel, split horizontally into a number of
windows which display different information. There are several types of
windows you can open and close within the SoftICE screen, but when
you first pop into SoftICE the screen is split into a Registers window at
the top, a Code window below it, and a Command window at the
bottom along with the Help line. The Register window will always
display the contents of the machine’s registers when SoftICE was popped
up, and the Code window will display the next instruction to be
executed. The Command window contains a command prompt at the
bottom, and the SoftICE output. It also captures any DebugPrint output
from drivers and applications in the system.

If you have installed SoftICE with the default configuration, you will
probably find that the screen is a little small. There are a few ways to
change this. First, you can use the LINES and WIDTH commands to
change the number of lines and the number of characters in the SoftICE
screen. You can use the SET MAXIMIZE command to automatically make
the SoftICE screen as large as possible. If you are running in UVD mode,
the SET FONT command can be used to change the font, which can
make the screen more readable. Table 3-1 describes the function of each
command.

Note: You can also make these changes permanent through the Settings
application by adding semi-colon (;) separated entries in the Init
String field.

While in UVD mode, you can reposition and resize the entire SoftICE
window. To reposition the window, hold down <Ctrl>-<Alt> while using
the numeric keypad to move the window. Figure 3-1 on page 16 shows
the numeric keypad functions.

Table 3-1 SoftICE Window Resizing Commands

Command Action

LINES N Sets the maximum number of lines for the window to N.

WIDTH N Sets the maximum character width of the window to N.

SET MAXIMIZE on/off Maximizes the window length and width when enabled.

SET FONT N Changes the font used on the SoftICE screen.
Chapter 3� SoftICE Tutorial 15

BETA REVIEW
Figure 3-1. Numeric Keypad Functions

The size of the SoftICE screen in UVD mode will be limited by the
amount of graphics memory allocated by SoftICE. If the screen cannot be
made large enough, you can increase the amount of graphics memory
with the Settings utility (Start>Programs>Compuware
DriverStudio>Settings).

Table 3-2 on page 16 describes the SoftICE windows that are available,
and the commands and keystrokes you can use to display and/or switch
to each.

Table 3-2. Available SoftICE Windows

Name Command Hot Key Description

Registers WR <Alt>-R Shows the state and values of the hardware register set.

Locals WL <Alt>-L Displays the local information (variables, etc.) for the current stack frame.

Watch WW <Alt>-W Allows you to monitor the values of expressions that you have set using the WATCH
command.

Data WD.n <Alt>-D Allows you to view and edit the contents of memory. Up to four Data windows can be
opened (0-3) specified by n. <Alt>-D functions on the current Data window only.

Thread WT <Alt>-T Displays information on the threads within a given process.

Code WC <Alt>-C Displays source code, disassembled instructions, or both (mixed).

Stack WS <Alt>-S Displays the call stacks.

Command N/A N/A Enter user commands here, and receive command execution information.

Help Line N/A N/A Provides information about SoftICE commands and shows the active address context
16 Using SoftICE

BETA REVIEW
Figure 3-2 SoftICE Window

Registers Window

Locals Window

Watch Window

Data Window

Thread Window

Code Window

Stack Window

Command Window
Chapter 3� SoftICE Tutorial 17

BETA REVIEW
Many SoftICE windows can be scrolled if you have a “wheel” mouse.
Otherwise, you can click on the scroll arrows. SoftICE also provides key
sequences that let you scroll specific windows. Press <Ctrl>-D to pop-up
SoftICE and press <Alt>-C to switch to the Code window (if not using a
mouse) and try these methods for scrolling:

To disassemble the instructions for the current instruction pointer, enter
the U command with EIP as a parameter.

:U EIP

You can also use the . (dot) command to accomplish the same thing:

:.

Moving and Resizing SoftICE Windows

You can resize the windows within SoftICE , using either a mouse or the
command line, to best fit your specific debugging scenario.

Using a Mouse

To resize a window using a mouse, click on the bottom of the window or
on the title bar, and drag the window border to the desired position.

Using the Command Line

To set a window to an exact number of lines, use the WX command
followed by the number of lines you want, where X is the letter
identifying the window (see the commands in Table 3-2 on page 16).

Table 3-3. Scrolling Methods

Scroll Code Window Key Sequence Mouse Action

Scroll to the previous page. PageUp Click the innermost up scroll
arrow

Scroll to the next page. PageDown Click the innermost down scroll
arrow

Scroll to the previous line. UpArrow Click the outermost up scroll
arrow

Scroll to the next line. DownArrow Click the outermost down scroll
arrow

Scroll left one character. Ctrl-LeftArrow Click the left scroll arrow

Scroll right one character. Ctrl-RightArrow Click the right scroll arrow
18 Using SoftICE

BETA REVIEW
You can also resize windows by a number of lines relative to the current
size by issuing the WX command followed by +/- and the number of
lines. This will increase or decrease the window size by the number of
lines specified. For example:

:WL +10

This command would increase the Locals window by ten lines.

When you have finished adjusting the screen size, exit SoftICE by typing
X and pressing <Enter> or pressing <Ctrl>-D.

Overview of the Sample Software
The sample software consists of several binaries encompassing most of
the debugging situations that you routinely encounter. Table 3-4
provides descriptions of the files comprising the sample application set.

The sample applications are presented as a collection of short contrived
tests to illustrate specific features of SoftICE, as well as certain common
programming errors.

Caution: The sample applications consist of code that is deliberately
buggy. Most code is written to demonstrate a single topic. Many
programming rules have been broken and there are a large number of
bugs that can crash your machine. This is by design. When a Blue Screen
crash is expected, you will be warned ahead of time and given the
option to abort the impending crash.

Table 3-4. Sample Files

Filename Description

NMDemo1a Main application serving as a front end to the sample application set

DemoDLL.dll Supporting DLL file for NMDemo1a

DSDemo1d Driver component

GDIDemo Secondary sample application
Chapter 3� SoftICE Tutorial 19

BETA REVIEW
Building the Sample Code
Note: We have provided several mechanisms for building the samples. For

the purposes of this tutorial, we suggest that you begin by using the
pre-built binaries shipped with the samples. This will get you
comfortable with debugging without the added complexity of
compiler settings. If you want to experiment with making changes to
the sample programs, you can return to this section for instructions
on building them.

The first step in preparing to debug a Windows application is to build it
with debug information. SoftICE uses NMS files to obtain symbols and
other debug information. NMS files are a superset of the DBG and PDB
files used in Windows. In addition to debug information, NMS files are
optimized for quick lookups, and can contain embedded source files.
NMS files are generated and loaded into SoftICE using Loader32, a GUI-
based tool, or NMSYM, a command-line tool. SoftICE can also be set up
to load a set of NMS files whenever it is started.

You can build the sample applications using:

� Microsoft Visual Studio 6.0 (and later)
� Microsoft Visual Studio.NET 2003
� A Windows XP DDK Free or Debug Build Environment

Note: We have provided pre-built binaries and symbol files for those users
who may not have a compiler installed. These files are located in the
Output directory.

Note: All build environments will generate .nms symbol files and copy
them to the Output directory along with their associated binaries.
This is done via post-build steps in the IDE, and with sources and
makefiles from the build command line.

Table 3-5. Building the Sample Code

Building with... Follow these steps...

Visual Studio 6 1 Open Numega DS Demo 1.dsw in the
NmDemo1 root directory.

2 Choose the appropriate project and build
environment.

3 Load the symbols into SoftICE (optional).

4 Execute the program from the Output
directory.
20 Using SoftICE

BETA REVIEW
Launching the Application
To debug an application with SoftICE, you will need to load the
application’s symbol information first, and then launch the application
from Windows. For this first demonstration, you will load the NMS files
for nmdemo1a, set a breakpoint in SoftICE, and then launch the
application from Windows. Later we will show you how to use the
SoftICE Symbol Loader to do all this in one step.

Complete the following steps to load the symbols into SoftICE .

1 Open the Output folder in the Examples directory where SoftICE was
loaded on your system.

2 Right-click on each of the four NMS files, and select Load into
SoftICE from the pop-up menu.

Now you must set a breakpoint so SoftICE will pop-up when the
application is started.

1 Press <Ctrl>-D to pop-up the SoftICE window.

2 Use the <Ctrl> and <Alt> keys in conjunction with the keypad to
position the SoftICE window where you want it on your screen.

Visual
Studio.NET 2003

1 Open the NuMega DS Demo1.SLN solution
in the NmDemo1 root directory.

2 Choose the appropriate project and build
environment.

3 Load the symbols into SoftICE (optional).

4 Execute the program from the Output
directory.

DDK Build Utility 1 Open up the approriate DDK Build
Environment.

2 From the root Examples directory issue the
build command.

Note: You could also change into each of the
subprojects and issue the build command
for each.

Table 3-5. Building the Sample Code (Continued)

Building with... Follow these steps...
Chapter 3� SoftICE Tutorial 21

BETA REVIEW
3 Use the SET MAXIMIZE command to fully expand it.

:SET MAXIMIZE on

4 Issue the TABLE command.
SoftICE displays the symbol tables you loaded. When you load
symbols for an application, SoftICE creates a symbol table containing
all the symbols defined for that module. The current table is
highlighted. To switch to another table, and make that the current
table, issue the TABLE command with the new table-name as a
parameter.

Note: SoftICE will do best-case matching for the table or file name. You
need only enter enough of the name to uniquely identify it.

Note: SoftICE allows you to auto-complete table and file names by pressing
<Tab> after typing a partial name.

5 Issue the FILE * command.
SoftICE displays the source files associated with the current table.
Switch to a different table and issue the FILE * command again. The
source files will have changed. Table 3-6 displays the source files
associated with each table for the sample aplications.

Note: The Command window varies in size depending upon the
number of lines used by open windows, so you might not see all
these file names. To display the remaining file names, press any
key (Refer to Chapter 5: on page 75 for information about resizing
windows).

6 Issue the TABLE command again and specify NMdemo1a.

Tip: Use the
AutoCompletion feature
by pressing <Tab> after
entering a partial symbol,
table, or file name
throughout this section.

:TABLE nmdemo1a

7 Issue the FILE command and specify nmdemo1app.

:FILE nmdemo1app

8 Jump to the WinMain function using the U command.

:U winmain

Table 3-6. Sample Application Tables and Associated Source Files

Current Table Source Files

DemoDLL demodll.cpp

GDIdemo xform.c, wininfo.c, poly.c, maze.c, init.c, gdidemo.c, draw.c, dialog.c,
bounce.c

NMdemo1a service.cpp, nmdemo1app.cpp

DSdemo1d tt.c, tc.c, si.c, nmdemo1drv.c, bc.c
22 Using SoftICE

BETA REVIEW
9 Set a breakpoint on WINMAIN by issuing the BPX command.

:BPX winmain

Note: You can also set the breakpoint by pressing the F9 key or double-
clicking on a location within the Code window; SoftICE will place the
breakpoint at your current location.

10 Set a breakpoint on openConnectionToTestDriver by issuing the
BPX command.

:BPX openConnectionToTestDriver

This breakpoint will be used later, in an example of setting
conditional breakpoints.

11 Enter the X (exit) command, or press F5 to pop-down SoftICE.

12 Start the NMdemo1a application by double-clicking on the
executable in the Output folder under the Examples directory.
SoftICE pops up when the breakpoint you set on WINMAIN is hit.

Tracing and Stepping through the Source Code
The following steps show you how to use SoftICE to trace through source
code:

1 Enter the T (trace) command or press the F8 key to trace one
instruction.

:T

Note: The F8 key is the default key for the T (trace) command.

Tip: To change the
default behavior of
function keys, refer to
the FKEY command in
the SoftICE Command
Reference.

Execution proceeds to the next source line and highlights it. At this
point, the following source line should be highlighted:

gApphInstance = hInstance;

The Code window is currently displaying source code. However, it
can also display disassembled code or mixed (both source and
disassembled) code.

2 To view mixed code, use the SRC command (or press the F3 key).

:SRC

Now each source line is followed by its assembler instructions.

3 Press F3 once to see disassembled code, then again to return to source
code.
Chapter 3� SoftICE Tutorial 23

BETA REVIEW
4 Enter the T command (F8) to trace one instruction.

Tip: The T command
does not trace into a
function call if the
source code is not
available. A good
example of this is
Win32 API calls. To
trace into a function
call when source code
is not available, use the
SRC command (F3) to
switch into mixed or
assembly mode and
then continue tracing
into the call statement.

:T

Execution proceeds to the next source line and highlights it. At this
point, the following source line should be highlighted:

if (!IsCorrectOSVersion())

As demonstrated in these steps, the T command executes one source
statement or assembly language instruction. You can also use the P
command (or press the F10 key) to execute one program step.

Note: Stepping differs from tracing in one crucial way — if you are
stepping and the statement or instruction is a function call, control is
not returned until the function call is complete. Use P (F10) to step
over a function call, or T (F8) to step into it.

Viewing and Editing Local Data
The Locals window displays the current stack frame. The following steps
illustrate how to use the Locals window:

1 Enter the WL command to open the Locals window.

:WL

In this case, the Locals window contains the local data for the
WINMAIN function.

2 Enter the T command (F8) to enter the IsCorrectOSVersion()
function.

:T

The Locals window is now empty because local data is not yet
allocated for the function.

Note: Local data will not appear until you step into a function. If you
examine the assembly code you will note that the stack frame is not
yet set up when a breakpoint is set on the start of the function.

The IsCorrectOSVersion() function is implemented in the source
file nmdemo1app.cpp. SoftICE displays the current source file in the
upper left corner of the Code window.

3 Enter the P command (F10) to step into the
IsCorrectOSVersion() function.

:P
24 Using SoftICE

BETA REVIEW
The Locals window now contains the locals that are available in the
IsCorrectOSVersion() function.

The structure tag osvi is marked with a plus sign (+). This indicates
that you can expand the structure to view its contents.

Note: You can also expand character strings and arrays.

4 If you have a mouse, double-click the structure osvi to expand it.
To collapse the structure osvi, double-click it again.

To use the keyboard to expand the structure: press <Alt>-L to move
the cursor to the Locals window, use the UpArrow or DownArrow to
move the highlight bar to the structure, and press <Enter>.
Press <Enter> a second time to collapse it.

Editing Local Data

You can edit the local variables that appear in the Local window using
inline editing mode.

Note: You can also use inline editing mode to edit variables in the Watch
window.

1 Use the SS command to search for EX_3.

:SS EX_3

The SS command is used to search for a string in the current source,
and EX_3 is a comment we placed in the code to allow you to find
the dummy variables we provided for you to practice editing.

2 Press <Alt>-C to enter the Code window.
The cursor is placed at the top of the Code window, on the line
containing the EX_3 comment.

3 Set a breakpoint on the line by issuing the BPX command.

:BPX

SoftICE knows that the current line is a comment, and it sets the
actual breakpoint on the next executable line of code. The line is
highlighted to indicate the breakpoint is set.

4 Press <Alt>-C to exit the Code window.

5 Press F5 to pop-down SoftICE and execute to the breakpoint.
The locals window now displays several dummy variables we
supplied in the code for you to edit.

6 Press <Alt>-L to enter the Locals window, and use the down-arrow to
move focus to the bIsWin9x local.
Chapter 3� SoftICE Tutorial 25

BETA REVIEW
7 Press <Alt>-E to enter inline editing mode.
The cursor enters the Locals window and flashes on the value of
bIsWin9x, waiting for you to input a new value.

8 Enter 1 and press <Enter>.
SoftICE accepts the new value for the bIsWin9x local, and exits
inline editing mode.

9 Clear the breakpoint we hit for this example (identified as number
02) using the BC command.

:BC 02

Setting Point-and-Shoot Breakpoints
This section shows you how to set two useful types of point-and-shoot
breakpoints: one-shot and sticky breakpoints.

Setting a One-Shot Breakpoint

The following steps demonstrate how to set a one-shot breakpoint. A
one-shot breakpoint clears after the breakpoint is triggered.

1 Shift focus to the Code window by pressing <Alt>-C, or by clicking in
the window.

Note: When you want to shift focus back to the Command window, press
<Alt>-C again, or simply start typing a command.

2 Either use the SS command to search for the comment EX_5, or use
the U command to place the cursor on line 145.
This location is a call to the TempDriverHandle function. If you use
the U command, specify the source line 145 as follows:

:U .145

SoftICE places source line 145 at the top of the Code window.

3 Use the HERE command (F7) to execute to line 145.

The HERE command executes from the current instruction to the
instruction that contains the cursor. The HERE command sets a one-
shot breakpoint on the specified address or source line and continues
execution until that breakpoint triggers. When the breakpoint is
triggered, SoftICE automatically clears the breakpoint so that it does
not trigger again.

The following current source line should be highlighted:

if(TempDriverHandle)
26 Using SoftICE

BETA REVIEW
Note: You can do the same thing by using the G (go) command and
specifying the line number or address to which to execute:

:G .145

Setting a Sticky Breakpoint

The following steps demonstrate another type of point-and-shoot
breakpoint: the sticky breakpoint, which does not clear until you
explicitly clear it.

1 Find the next call to OpenConnectionToTestDriver by entering
the SS command to search for EX_6.

:SS EX_6

Tip: The F9 key is the
default key for the BPX
command.

2 Enter the BPX command (F9) to set an execution breakpoint. Note
that the line is highlighted when you set the breakpoint.

3 Press the F9 key to clear the breakpoint.

Note: If you are using a mouse, you can double-click on a line in the Code
window to set or clear a breakpoint.

4 Set the breakpoint again, then use the G or X command (F5) to
execute the instructions until the breakpoint triggers:

:G

At this point SoftICE pops up on an unexpected location. This is due
to the breakpoint you set on the openConnectionToTestDriver
function earlier in the tutorial. This demonstrates a situation where
setting a conditional breakpoint would be useful, as you could have
avoided hitting this breakpoint while trying to run to the breakpoint
we just set. Conditional breakpoints are explained in “Setting a
Conditional Breakpoint” on page 29.

5 Use the G or X command (F5) once again.

:G

The application starts up, and presents you with the main screen.
Since the breakpoint we want to hit is set on a test driver function,
you will need to start the driver in order for us to encounter it.

6 Click the Start Driver button.
When the code line containing the breakpoint is hit, SoftICE pops
up. Unlike the HERE command, which sets a one-shot breakpoint,
the BPX command sets a sticky breakpoint. A sticky breakpoint
remains until you clear it.
Chapter 3� SoftICE Tutorial 27

BETA REVIEW
7 To view information about breakpoints that are currently set, use the
BL command:

:BL
00) BPX WinMain
01) BPX openConnectionToTestDriver
02) BPX MainDlgFunc+01BC

Note: The address you see might be different.

From the output of the BL command, breakpoints are set on
WinMain and openConnectionToTestDriver from the first two
breakpoints we set during this tutorial. The third breakpoint is set on
MainDlgFunc+01BC. This equates to the call to
bDriverRunning=openConnectionToTestDriver(TRUE) in the
current source file.

8 Use the U command to jump to the location of the first breakpoint in
the list (0).

:U BP0

BP0 evaluates to the address of breakpoint 0, and the U command
quickly jumps to that location.

9 Use the dot (.) command to return to the EIP.

:.

10 You can use the SoftICE expression evaluator to translate a line
number into an address. To find the address for line 183, use the ?
command.

:? .183
<ulong> = 0x40133C, 4199228, “@!!<”

Note: The actual address displayed may be different on your system.

The expression evaluator displays results in three formats:
hexadecimal, decimal, and ASCII characters. In this case, the hex
value is the one we are interested in to see the address.

11 The OpenConnectionToTestDriver function has a relatively
straightforward implementation, so it is unnecessary to trace every
single source line. Use the P command with the RET parameter (F12)
to return to the point where this function was called.

:P RET

Focus should be on the following source line.

UpdateButtonsOnMainDlg(hwndDlg);
28 Using SoftICE

BETA REVIEW
12 Enter the BC command to clear the very first and very last
breakpoints, preserving the breakpoint set on
openConnectionToTestDriver.

:BC 0
:BC 2

13 Enter the BL command to confirm that the breakpoints have been
cleared.

:BL
01) BPX openConnectionToTestDriver

Setting a Conditional Breakpoint
One of the symbols defined for the NMDemo1a application is the
openConnectionToTestDriver function. The purpose of this routine is
to initialize the connection to the test driver in the application.

To learn about conditional breakpoints, you will edit the current BPX
breakpoint (set on the openConnectionToTestDriver function) to use
a conditional expression, thus making it a conditional breakpoint.

Editing a Breakpoint

If you examine the openConnectionToTestDriver function, you can
see that the function accepts one parameter of type BOOL (gWarnings)
and returns an INT type. At this point, you want to modify the existing
breakpoint, adding a condition to isolate a specific instance.

1 Because you already have a breakpoint set on the
openConnectionToTestDriver function, use the BPE command
to modify (or edit) the existing breakpoint.

:BPE 1

When you use the BPE command to modify an existing breakpoint,
SoftICE places the definition of that breakpoint onto the command
line so that it can be easily edited. The output of the BPE command
appears.

:BPX openConnectionToTestDriver

The cursor appears at the end of the command line, and SoftICE is
ready for you to type in the conditional expression.

2 Add an IF condition to the breakpoint to cause the breakpoint to fire
only when the local bGlobalWarnings evaluates to TRUE. The
conditional expression appears in bold type.

:BPX openConnectionToTestDriver IF (gWarnings == TRUE)
Chapter 3� SoftICE Tutorial 29

BETA REVIEW
3 Press <Enter> when you are done editing the breakpoint.
SoftICE accepts the changes and exits breakpoint editing mode.

4 Verify that the breakpoint and conditional expression are correctly
set by using the BL command.

:BL
01) BPX openConnectionToTestDriver IF (gWarnings == TRUE)

5 Exit SoftICE using the G or X command (F5).
The NMDemo1a application starts up. Click the Start Driver button
at the bottom of the application’s main screen. SoftICE pops-up
when the conditional expression is TRUE.

Note: If the Stop Driver button is active, it means you have previously
started the driver at some point. Click the Stop Driver button and
continue with the tutorial.

Setting a Read-Write Memory Breakpoint
Setting a memory breakpoint allows you to pop-up SoftICE when
memory is accessed to read, write, read/write, or execute. This allows you
to use SoftICE to locate and resolve any number of memory related bugs.
For the purposes of this example, we are going to use the sample
application’s built-in ring-3 memory overrun. The sample application
sets up a simple scenario where you are accessing memory to change the
name of an employee from Chris to Christopher.

1 Exit SoftICE using the G or X command (F5).
You are returned to the main screen of the sample application.

2 Click Ring-3 Main.
The sample application opens the set of Ring-3 tests.

3 Click Memory Overrun.
The memory overrun test is selected.

4 Click OK to begin running the test.
The Old Salary Report for Chris shows that as of last week he made
$20,000.00 a year.

5 Click OK.
The New Salary Report for Chris shows that after the name change,
his salary suddenly also changed and he now makes $7,497,064.00 a
year.
30 Using SoftICE

BETA REVIEW
Obviously, since we only planned on changing the employee name from
Chris to Christopher, there is a memory overwrite problem somewhere.
SoftICE can help you locate the source of the memory overwrite error by
popping-up when a piece of memory is accessed.

1 Press <Ctrl>-D to pop-up SoftICE.

2 Use the TABLE command to make sure nmdemo1a is the active
symbol table.

:TABLE nmdemo1a

3 Use the BPMD command to set a dword memory breakpoint on the
employee.salary location, to be triggered by a write to that
location.

:BPMD employee.salary w

4 Exit SoftICE using the G or X command (F5).
You are returned to the sample application.

5 Click Memory Overrun.
The memory overrun test is selected.

6 Click OK to begin running the test.
The Old Salary Report for Chris shows that as of last week he made
$20,000.00 a year.

7 Click OK.
SoftICE pops-up when memory is written to employee.salary.

By examining the section of code where SoftICE popped-up (Figure 3-3
on page 32), we can see that the source of the memory overwrite error is
that we have allocated a maximum of six characters for employee.name.
When we try and change Chris to Christopher, the excess characters
overrun the allocated space for employee.name and write into
employee.salary.
Chapter 3� SoftICE Tutorial 31

BETA REVIEW
Figure 3-3 Code to Change Employee Name

Using SoftICE Informational Commands
SoftICE provides a wide variety of informational commands that detail
the state of an application or the system. This section teaches you about
two of them: H (help) and CLASS. The H command provides general
help on all the SoftICE commands, or detailed help on a specific
command. The H and CLASS commands work best when you have more
room to display information. Closing the Locals window automatically
increases the size of the Command window.

1 Use the WL command to close the Locals window.

:WL

#define MAX_NAME_LEN 6
#define MAX_EMPLOYEES 3

typedef struct _EmployeeInfo
{
 char name[MAX_NAME_LEN];
 ULONG salary;
} EmployeeInfo;
EmployeeInfo Employee = {"Chris", 20000};

void AppMemoryOverrun()
{
 char *newname = "Christopher";
 char *oldname;

...

// We just got an official name change request for this
employee.
 // Lets copy it over (to make the failure more dramatic
lets avoid any RTL code)
 oldname = Employee.name;
 while (*newname)
 {
 *oldname = *newname;
 oldname++;
 newname++;

Breakpoint Hit

Maximum name length
set to six characters.
32 Using SoftICE

BETA REVIEW
2 To view detailed help about the CLASS command, enter CLASS as
the parameter to the H command.

:H CLASS

Display window class information
CLASS [-x] [process | thread | module | class-name]
ex: CLASS USER

The first line of help provides a description of the command. The
second line is the command syntax, including any options and/or
parameters it accepts. The third line is an example of use.

3 Use the TABLE command to switch the current symbol table to
GDIDemo.

:TABLE GDIDemo

4 Set a breakpoint on CreateAppWindow using the BPX command.

:BPX CreateAppWindow

5 Exit SoftICE using the G or X command (F5).
You are returned to the sample application.

6 Click Other Demos from the main screen.

7 Click Launch GDIDemo.
A dialog informs you that GDIDemo is about to launch.

8 Click OK.
SoftICE pops-up. The RegisterAppClass function registers window
class templates that are used by the GDIDemo application to create
windows. When we hit the current breakpoint, classes have been
registered and we are about to create a window for GDIDemo.

9 Use the CLASS command to examine the classes registered by
GDIDemo.

:CLASS GDIDEMO
Chapter 3� SoftICE Tutorial 33

BETA REVIEW
Note: This example shows only those classes specifically registered by the
GDIDEMO application. Classes registered by other Windows
modules, such as USER32, are omitted.

The output of the CLASS command provides summary information for
each window class registered on behalf of the GDIDEMO process. This
includes the class name, the address of the internal WINCLASS data
structure, the module which registered the class, the address of the
default window procedure for the class, and the value of the class style
flags.

Note: For more specific information on window class definitions, use the
CLASS command with the -X option, as follows:

:CLASS -X

Using Symbols and Symbol Tables
When you load symbols for an application, SoftICE creates a symbol
table that contains all the symbols defined for that module. Symbol
tables now do time and date checking to ensure that the symbol files are
up to date with the binary in use. Correct any discrepancies by
retranslating and reloading the symbol table.

Table 3-1: Classes Used by GDIDEMO Application

Class Name Handle Owner Wndw Proc Styles

• ------------------Application Private------------------

BOUNCEDEMO A018A3B0 GDIDEMO 004015A4 00000003

DRAWDEMO A018A318 GDIDEMO 00403CE4 00000003

MAZEDEMO A018A280 GDIDEMO 00403A94 00000003

XFORMDEMO A018A1E8 GDIDEMO 00403764 00000003

POLYDEMO A018A150 GDIDEMO 00402F34 00000003

GDIDEMO A018A0C0 GDIDEMO 004010B5 00000003
34 Using SoftICE

BETA REVIEW
1 Use the TABLE command to see all the symbol tables that are loaded.

:TABLE
demodll [NM32]
dsdemo1d [NM32]
GDIdemo [NM32]
nmdemo1a [NM32]
0000503629 Bytes Of Symbol Memory Available

The currently active symbol table is listed in bold. This is the symbol
table used to resolve symbol names. If the current table is not the
table from which you want to reference symbols, use the TABLE
command and specify the name of the table to make active.

2 Use the TABLE command to switch the current symbol table to
nmdemo1a.

:TABLE nmdemo1a

3 Use the TABLE command again to see that the current symbol table
has changed.

:TABLE
demodll [NM32]
dsdemo1d [NM32]
GDIdemo [NM32]
nmdemo1a [NM32]
0000503629 Bytes Of Symbol Memory Available

4 Use the TABLE command again to switch the current symbol table
back to to GDIDemo.

:TABLE GDIDemo

5 Use the SYM command to display the symbols from the current
symbol table.

:SYM
.text(001B:00401000,000153E6 bytes)
001B:00401000 WinMain
001B:004010B5 WndProc
001B:004011DB CreateProc
001B:00401270 CommandProc
001B:00401496 PaintProc
001B:004014D2 DestroyProc
001B:004014EA lRandom
001B:00401530 CreateBounceWindow
001B:004015A4 BounceProc
001B:004016A6 BounceCreateProc
001B:00401787 BounceCommandProc
001B:0040179C BouncePaintProc
Chapter 3� SoftICE Tutorial 35

BETA REVIEW
This list of symbol names is from the .text section of the
executable. The .text section is typically used for procedures and
functions. The symbols displayed in this example are all functions of
GDIDemo.

The actual output from the SYM command will include all sections of
the executable. SYM can also be used with a search string to look for a
particular symbol.

:SYM paint*
.text(001B:00401000,000153E6 bytes)
001B:00403790 PaintProc
001B:00402430 PaintWindow

Congratulations on completing your first SoftICE debugging session!
Your world will never be the same again. In this session, you traced
through source code, viewed locals and structures, and set point-and-
shoot, conditional, and read-write memory breakpoints. SoftICE provides
many more advanced features. The SoftICE commands ADDR, HEAP,
LOCALS, QUERY, THREAD, TYPES, WATCH, and WHAT are just a few
of many that will help you debug smarter and faster. Refer to the SoftICE
Command Reference for a complete list, and an explanation of all of the
SoftICE commands.

Using Symbol Loader
Symbol Loader is an important tool within SoftICE. It allows you to
translate and load the symbols required to do meaningful debugging.
SoftICE uses NMS files as the source for its symbolic information, as we
mentioned earlier in the tutorial. Compilers, on the other hand, emit
symbolic information into PDB or (for older compilers) DBG files.
Symbol Loader is used to translate the compiler format to the SoftICE
NMS format, and load the resulting files into SoftICE.

There are two basic ways you can use Symbol Loader to bring symbol files
into SoftICE: Translating one file at a time in Single File mode, or using
Workspace View mode, which allows you to manipulate collections of
symbol files.
36 Using SoftICE

BETA REVIEW
Single File Mode

In Single File mode, you use Symbol Loader to load symbol information
into SoftICE one NMS file at a time. You can accomplish this from within
the directory containing the NMS file (as you did in the beginning of this
tutorial) by right-clicking on the NMS file and selecting Load into
SoftICE from the pop-up menu. However, Symbol Loader can do much
more for you than simply loading an NMS file. It can also regenerate the
NMS file if it is older than the binary it is associated with, and for
applications it can execute the binary and cause SoftICE to pop-up on the
main (or WinMain) routine.

From within Symbol Loader, load a single symbol file into SoftICE by
completing the following steps.

1 Start Symbol Loader (Start>Programs>Compuware
DriverStudio>Debug>Symbol Loader).
The Symbol Loader window appears (Figure 3-4 on page 37).

Figure 3-4 Symbol Loader Window
Chapter 3� SoftICE Tutorial 37

BETA REVIEW
2 Select Open from the File menu.
The Open File dialog appears.

3 Locate GDIDEMO.EXE in the Output directory and click Open.

4 Select Load from the Module menu to load GDIDEMO.
Symbol Loader translates the debug information into an NMS file,
loads the symbol and source files, starts GDIDEMO, pops up the
SoftICE screen, and displays the source code for the file GDIDEMO.C.
(Figure 3-5 on page 38). SoftICE popped up because the option Stop
at WinMain was checked. To toggle this setting, select Settings from
the Module menu, and click on the Debugging tab.

Figure 3-5 GDIDEMO Symbols Loaded

Workspace View Mode

Workspace View mode allows you to create a workspace and associate a
number of symbol files with it. Then, the act of loading the workspace
automatically loads and translates all of the applicable symbols you need
for your debugging scenario.

To create a workspace and associate symbols files with it, complete the
following steps.

1 Select New from the File menu.
Symbol Loader opens the New Workspace/Sessions dialog (see Figure
3-6 on page 39).

2 Select Blank Workspace from the left-hand list.

3 Enter a name for the workspace into the Name field, and click OK.
If you have not created any workspaces previously, then Loader32
will confirm that you want to create a directory for them.
Loader32 shifts to Workspace View mode (see Figure 3-7 on page 39).
38 Using SoftICE

BETA REVIEW
Figure 3-6 New Workspace/Sessions Dialog

Figure 3-7 Loader32 Workspace View
Chapter 3� SoftICE Tutorial 39

BETA REVIEW
4 Select New from the File menu.
Symbol Loader opens the New Workspace/Sessions dialog (see Figure
3-6 on page 39).

5 Select Session from the left-hand list.

6 Enter a name for the session into the Name field.

7 Select Add to Current Workspace in the Project section, and click
OK.
If you have not created any sessions previously, then Loader32 will
confirm that you want to create a directory for them.

Loader32 adds your session to the left-hand pane in the Workspace
View.

8 Repeat steps 4 through 7 to add another session to the workspace for
OS symbols.
The left-hand pane will now list two sessions in your workspace (see
Figure 3-8 on page 41).

9 Right-click on the first session in the list, and select Add Files from
the pop-up menu.
Loader32 opens the Add Files dialog.

10 Select the GDIDemo.exe file and click OK.
Loader32 automatically builds the symbol dependency chain and
adds the GDIDemo.exe and GDIDemo.nms files to the session.

11 Repeat step 9 to access the Add Files dialog and add each of the
remaining Demo Application files: nmdemo1a, dsdemo1d, and
demodll (see Figure 3-8 on page 41).

12 Right-click on the second session in the list, and select Add Files
from the pop-up menu.
Loader32 opens the Add Files dialog.
40 Using SoftICE

BETA REVIEW
Figure 3-8 Files Loaded into Sessions

13 Browse to the Windows | System32 directory, and select and add
each of the following Operating System symbol files: ntdll.dll,
ntoskrnl.exe, user32.dll, shell32.dll, and win32k.sys.

14 Right-click on ntdll.dll in the Sessions list, and select Settings
from the pop-up menu.
Loader32 opens the Project Settings dialog, and presents the General
tab.

15 Select Translate and Load in the Symbol Retriever section, and
Click OK.
This allows Loader32 to use the MS Symbol Server that is pre-defined
in the Symbol Site URL text box. The MS Symbol Server serves as a
repository for the most up-to-date OS symbols when you are
debugging.

16 Repeat steps 14 and 15 for each of the remaining files in the sessions
list (ntoskrnl.exe, user32.dll, shell32.dll, and win32k.sys).
Chapter 3� SoftICE Tutorial 41

BETA REVIEW
A Word on Symbol Server Technology
Microsoft has introduced a very useful technology, known as Symbol
Server, that helps you to ensure you are using the correct debugging
symbols for your particular build, patch, service pack, or hotfix of the
operating system. A symbol server is a repository for debug files that are
uniquely identified and tied to a specific build of a binary.

Microsoft also supplies the symstore.exe utility, allowing you to build
your own symbol server repository for your own binaries. SoftICE can be
configured to retrieve symbols from any symbol server site. This can be
done through the Symbol Loader, as seen in this tutorial chapter, and
also through the stand-alone Symbol Retriever utility (which is located
under the Debug menu, and is freely available for download).
42 Using SoftICE

BETA REVIEW
Chapter 4

Loading Code into SoftICE
� Debugging Concepts

� Loading SoftICE

� Using Symbol Loader to Translate and Load Files

� Modifying Module Settings

� Specifying Modules and Files

� Deleting Symbol Tables

� Downloading Symbols from a Symbol Server

� Using Symbol Loader From an MS-DOS Prompt

� Using the Symbol Loader Command-Line Utility

Debugging Concepts
SoftICE allows you to debug Windows applications and device drivers at
the source level. To accomplish this, SoftICE uses the Symbol Loader
utility to translate the debug information from your compiled module
into an .NMS symbol file. When this is done, Symbol Loader can load the
.NMS file and, optionally, the source code into SoftICE, where you can
debug it.

The point in time at which you need to load the .NMS file depends on
whether you are debugging a module that runs after the operating system
boots or a device driver or static VxD that loads before the operating
system initializes. If you are loading a device driver or VxD, SoftICE pre-
loads the module’s symbols and source when it initializes. If you are
debugging a module or component that runs after the operating system
boots, you can use Symbol Loader to load symbols when you need them.
 43

BETA REVIEW
This chapter explains how to use Symbol Loader to load your module into
SoftICE. It also describes how to use Symbol Loader from a DOS prompt
to automate many of the most common tasks it performs and how to use
the Symbol Loader command-line utility (NMSYM) to create a batch
process to translate and load symbol information.

Note: Symbol Loader only supports Windows applications. To debug MS-
DOS applications use the tools in the UTIL16 directory.

Preparing to Debug Applications

The following general steps explain how to prepare to debug modules
and components that run after the operating system boots. These
modules include EXEs, DLLs, dynamic VxDs, and OCXs. The sections
that follow explain how to perform these steps in detail.

1 Build the module with debug information.

2 If SoftICE is not already loaded, load SoftICE.

3 Start Symbol Loader.

4 Select File > Open and open the module that you want to debug.

5 Use Symbol Loader to translate the debug information into a .NMS
symbol file and load the source and symbol files into SoftICE for you.

Preparing to Debug Device Drivers and VxDs

The following general steps explain how to prepare to debug device
drivers or static VxDs that load before the operating system fully
initializes. The sections that follow explain how to perform these steps in
detail.

1 Build the application with debug information.

2 If SoftICE is not already loaded, load SoftICE.

3 Start Symbol Loader.

4 Click the OPEN button to open the module you want to debug.

5 Select the PACKAGE SOURCE WITH SYMBOL TABLE setting within the
Symbol Loader translation settings. Refer to Modifying Module Settings
on page 49.

6 Click the TRANSLATE button to create a new .NMS symbol file.
44 Using SoftICE

BETA REVIEW
7 Modify the SoftICE initialization settings to pre-load the debug
information for the VxD or device driver on startup. Refer to Pre-
Loading Symbols and Source Code on page 196.

8 Reboot your machine.

Loading SoftICE
If you are running SoftICE in Boot, System, or Automatic mode, it
automatically loads when you start or reboot your PC. If you are running
SoftICE in Manual or Disabled mode, it does not load automatically. To
change the mode in which you have SoftICE configured to load, access
the Startup screen in the DSConfig utility, and select the desired mode
from the SoftICE drop-down list (See Figure 4-1 on page 46).

Early Loading of SoftICE

When set to Boot Mode, SoftICE loads near the end of the list of boot
drivers. This is sufficient for most situations, and is done so that we have
easier access to a number of hardware devices, such as hard drives. It is
possible to configure SoftICE to be the first item loaded after NTOSKRNL
and HAL. To Enable/Disable early boot mode, set SoftICE for Boot Mode
then check or clear the Enable Early Boot Mode check-box. For
additional information read the siwsym.txt readme in the SoftICE
installation directory.
Chapter 4� Loading Code into SoftICE 45

BETA REVIEW
Figure 4-1 Startup Configuration Screen

Loading SoftICE Manually

SoftICE does not load automatically when you configure the startup
mode to Manual or Disabled. If you have SoftICE startup mode set to
Manual or Disabled, you need to load SoftICE manually. To load SoftICE
manually, do one of the following:

� Select START SOFTICE from the Compuware/SICE group

� Enter the command: NET START NTICE

Note: Once you load SoftICE, you cannot deactivate it until you reboot
your PC.

Building Applications with Debug Information
The following compiler-specific information is provided as a guideline. If
you are building an application with debug information, consult your
compiler or assembler documentation for more information.
46 Using SoftICE

BETA REVIEW
Note: SoftICE supports other compilers that may not appear in the above
table. In general, SoftICE provides symbolic debugging for any
compiler that produces Codeview compatible debug information.

Table 4-1. Compiler-specific Debugging Information

Compiler Generating Debugging Information

Borland C++ 4.5
and 5.0

To generate Borland’s standard debug information:

Compile with /v

Link with /v

Delphi 2.0 To generate Delphi’s standard debug information:

Compile with the following:

-V to include debug information in the executable

-$W+ to create stack frames

-$D+ to create debug information

-$L+ to create local debug symbols

-$O- to disable optimization

MASM 6.11 To generate Codeview debug information:
Assemble with /Zi /COFF
Use Microsoft’s 32-bit LINK.EXE to link with
/DEBUG /DEBUGTYPE:CV /PDB:NONE

Microsoft Visual
C++ 2.x, 4.0, 4.1,
4.2, 5.0, 6.0, and
Visual Studio .NET

To generate Program Database (PDB) debug information:
Compile with Program Database debug information, using
the command-line option /Zi
Use Microsoft’s linker to link with
/DEBUG /DEBUGTYPE:CV

Note: VxDs require you to generate PDB debug
information.

To generate Codeview debug information:
Compile with C7-compatible debug information, using the
command-line option /Z7
Use Microsoft’s linker to link with
/DEBUG /DEBUGTYPE:CV /PDB:NONE

Note: If you are using the standard Windows NT DDK
make procedure, use the following environment
variables: NTDEBUG=ntsd and NTDEBUG-
TYPE=windbg.
Chapter 4� Loading Code into SoftICE 47

BETA REVIEW
Using Symbol Loader to Translate and Load Files
Before SoftICE can debug your application, DLL, or driver, you need to
create a symbol file for each of the modules you want to debug, and load
these files into SoftICE. Symbol Loader makes this procedure quick and
easy. Symbol Loader lets you identify the module you want to load, then
automatically creates a corresponding symbol file. Finally, Symbol Loader
loads the symbol, source, and executable files into SoftICE. By default,
Symbol Loader loads all the files referenced in the debug information. To
limit the source files Symbol Loader loads, refer to Specifying Modules and
Files on page 55.

To use Symbol Loader to load a module, do the following:

1 Start Symbol Loader.

Figure 4-2. Symbol Loader Window

2 Choose File > Open from the File menu.

3 Select your translation options.

4 If you open a .SYM file, Symbol Loader displays a dialog box that asks
you whether or not the file is a 32-bit file. If it is a 32-bit file, click
YES; otherwise, click NO.

5 Choose Module > Load from the Module menu.
48 Using SoftICE

BETA REVIEW
Symbol Loader translates your application’s debug information to an
.NMS symbol file. Then, Symbol Loader loads the symbol and source
files into SoftICE. (See Figure 4-2.)

If you are loading an .EXE file, SoftICE starts the program and sets a
breakpoint at the first main module (WinMain, Main, or DllMain) it
encounters.

The information Symbol Loader loads depends on the Translation
and Debugging settings. Refer to Modifying Module Settings for more
information about modifying Translation and Debugging settings.

Figure 4-3. Symbols Loaded

Modifying Module Settings
The Symbol Loader uses a series of settings to control how it translates
and loads files. These settings are categorized as follows:

� General — Specifies command-line arguments and symbol server
configuration information.

� Debugging — Specifies the types of files (symbols and executables)
Symbol Loader loads into SoftICE, as well as any default actions
SoftICE performs at load time.
Chapter 4� Loading Code into SoftICE 49

BETA REVIEW
� Translation — Specifies which combination of symbols (publics,
type information, symbols, or symbols and source) Symbol Loader
translates.

� Modules and Files — Associates additional debug files to load when
loading the base file.

� Source Files — Specifies local and global source file paths.

These settings are available on a per-module basis. Thus, changing a
particular setting applies to the current module only. When you open a
different module, Symbol Loader uses the pre-established defaults.

Tip The name of the
current open file is
listed in the Symbol
Loader title bar.

To change the default file settings for a module, do the following:

1 Open the file if it is not already open.

2 Select Module > Settings.

3 Click the tab that represents the settings you want to modify.

4 See the sections that follow for more information about specific
settings for each tab.

5 When you are done modifying the settings, click OK.

6 Load the file to apply your changes.

Modifying General Settings

The General tab (Figure 4-4) allows you to set command-line arguments
and configure the symbol retriever.

The following paragraphs describe the General settings selections.

Command Line Arguments

Use Command line arguments to specify command-line arguments to
pass to your program.

Symbol Retriever Configuration

Symbol loader has the ability to download symbols from any symbol
server site. By default it points to the Microsoft public symbol server site.
You can easily reconfigure it to point to a private or corporate site. For
more information on setting up a symbol server site, refer to the
documentation in the DDK for SYMSERVER.

The options allow you to specify where to store the .pdb or .dbg files,
and also to specify the location of the resulting .nms file.
50 Using SoftICE

BETA REVIEW
Figure 4-4. General Tab

Prompt for Missing Source Files

Check the Prompt for missing source files check box to determine if
Symbol Loader is to prompt you when it cannot find a source file. This
setting is global and is turned on by default.

Modifying Translation Settings

The Translation tab settings (Figure 4-4) determine the type of
information Symbol Loader translates when it creates .NMS symbol files
and specifies if your source code is stored in the symbol file. These
settings determine how much memory is needed to debug your program
and they are listed in order from least to most amount of symbol
memory required. The following paragraphs describe the Translation
settings selections.
Chapter 4� Loading Code into SoftICE 51

BETA REVIEW
Figure 4-5. Translation Tab

Publics Only

Publics Only provides public (global) symbol names. Neither type
information nor source code are included.

Type information only

This setting provides type information only. Use this setting to provide
type information for data structures that are reverse engineered.

Symbols only

Symbols only provides global, static, and local symbol names in
addition to type information. Source code is not included.
52 Using SoftICE

BETA REVIEW
Symbols and source code

Symbols and source code provides all available debugging information,
including source code and line number information. This setting is
enabled by default.

Package source with symbol table

This setting saves your source code with the symbol information in the
.NMS file. You might want to include your source file in the symbol file
under the following circumstances:

� Loading source code at boot time.

� SoftIce does not look for code files at boot time. If you need to load
source code for a VxD or Windows NT device driver, select Package
source with symbols table. Then, modify the SoftICE initialization
settings to load the debug information for the VxD or device driver
on startup. Refer to Pre-Loading Symbols and Source Code on page 196.

� Debugging on a system that does not have access to your source files.

� If you want to debug your application on a system that does not have
access to your source files, select PACKAGE SOURCE WITH SYMBOLS and
copy the .NMS file to the other system.

Caution: If you select Package source with symbol table, your source code
is available to anyone who accesses the symbol table. If you do not want
others to have access to your source code and you provide the .NMS file
with your application, turn off this option.

Modifying Debugging Settings

The Debugging tab settings (Figure 4-5) determine what type of
information to load and whether or not to stop at the module entry
point. The following paragraphs describe the Debugging settings
selections.

Load symbol information only

Load symbol information only loads the .NMS symbol file, but does
not load the executable image. It also loads the associated source files if
you selected Symbols and Source Code in the Translation options. By
default, Symbol Loader selects this setting for .DLL, .SYS, and VxD file
types.
Chapter 4� Loading Code into SoftICE 53

BETA REVIEW
Figure 4-6. Debugging Tab

Load executable

Load executable loads your executable and .NMS file. It also loads the
associated source files if you selected Symbols and Source Code in the
Translation options. By default, Symbol Loader makes this selection for
.EXE files.

Stop at WinMain, Main, DllMain, etc.

This setting creates a breakpoint at the first main module SoftICE
encounters as it loads your application.
54 Using SoftICE

BETA REVIEW
Specifying Modules and Files
By default, all program source files that are referenced in the debug
information are loaded. Depending on your needs, loading all program
source files may not be necessary. Also, if the number of source files is
large, loading all source files may not be practical.

The Modules and Files tab settings (Figure 4-6) determine which symbol
and debug files should be loaded when your program is loaded. To ignore
a symbol or debug file, clear its check box. To add or remove a module
use the buttons provided.

Figure 4-7. Modules and Files Tab

SoftICE also lets you use a .SRC file to specify which source files to load
for an executable module. A .SRC file is a text file that you create in the
directory where your executable resides. The filename of the .SRC file is
the same as the filename of the executable, but with a .SRC extension.
The .SRC file contains a list of the source files that are to be loaded, one
per line.
Chapter 4� Loading Code into SoftICE 55

BETA REVIEW
If you have an executable named PROGRAM.EXE, you would create a .SRC
file, PROGRAM.SRC. The contents of the PROGRAM.SRC file might look
like the following:

FILE1.C
FILE3.CPP
FILE4.C

Assuming that FILE2.C was a valid program source file, it would not be
loaded because it does not appear in the .SRC file. FILE1.C, FILE3.CPP,
and FILE4.C would be loaded.

Modifying Source Files

The Source Files tab (Figure 4-8.) allows you to specify source file search
paths.

The following paragraphs describe the Source File selections.

Figure 4-8. Source Files Tab
56 Using SoftICE

BETA REVIEW
Source File Search Path

Use Source file search path to determine the search path SoftICE uses
to locate files associated with this application. If Symbol Loader cannot
locate the files within this search path, it uses the contents of the Global
source file search path to expand its search.

Global Source File Search Path

Use Global source file search path to determine the search path
SoftICE uses to locate files in general. This setting is a global setting.

Note: If you use the Source file search path setting to specify the search
path for a specific program, Symbol Loader uses the search path you
specified for the application before looking at the global search path.
Chapter 4� Loading Code into SoftICE 57

BETA REVIEW
Deleting Symbol Tables
Every time you translate your source code, Symbol Loader creates a .NMS
symbol file in the form of a symbol table. When you load your module,
Symbol Loader stores the table in memory until you either delete the
table or reboot your machine. To delete a symbol table, complete the
following steps.

1 Choose Symbol Tables from the Edit menu.

Figure 4-9. Symbol Loader with Workspace Pane
58 Using SoftICE

BETA REVIEW
2 Right-click on the .NMS file in the Loaded Symbols list and select
Remove from the pop-up menu.

Note: You can also right-click on an item in the Loaded Symbols view
(Figure 4-10.) and select Remove from the pop-up menu for an
individual file. The selected symbol table is removed (Figure 4-11.).

Figure 4-10. Removing a Symbol Table
Chapter 4� Loading Code into SoftICE 59

BETA REVIEW
Figure 4-11. Symbol Table Removed Statement

Downloading Symbols from a Symbol Server
To download OS symbol files, complete the following steps.

1 Open the OS binary.

2 Change the Symbol Retriever option from the general page to
Translate and Load.

3 Select Download from the Module menu or click the associated
toolbar icon.
60 Using SoftICE

BETA REVIEW
Using Symbol Loader From an MS-DOS Prompt
Symbol Loader (LOADER32.EXE) supports a command-line interface that
lets you use many of its features from a DOS prompt without viewing
Symbol Loader’s graphical interface. Thus, you can automate many of the
most common tasks it performs.

Before you use LOADER32.EXE from a DOS prompt, use Symbol Loader’s
graphical interface to set the default search paths and to specify
translation and debugging settings for each module you plan to load.
Symbol Loader save these settings for each file and uses them when you
use LOADER32 to load or translate the files from a DOS prompt. Refer to
Modifying Module Settings on page 49.

To run LOADER32.EXE, either set your directory to the directory that
contains LOADER32.EXE or specify the SoftICE directory in your search
path.

Command Syntax

Use the following syntax for LOADER32.EXE:

LOADER32 [[option(s)] file-name]

Where file-name is the name of the file you want to translate or load
and options are as shown in Table 3-3.

Table 4-2. Symbol Loader Command-Line Options

Option Definition

/EXPORTS Loads exports for a file.

/LOAD Translates the module into a .NMS file, if one does not already
exist, and loads it into SoftICE. If you previously set Translation
and Debugging settings for this file, LOADER32.EXE uses these
settings. If you did not specify these settings, LOADER32.EXE
uses the defaults for the module type.

/LOGFILE Saves the SoftICE history buffer to a log file.

/NOPROMPT Instructs LOADER32.EXE not to prompt you if it cannot find a
source file.

/PACKAGE Saves your source code with the symbol information in the
.NMS file.

/TRANSLATE Translates the module into a .NMS file using the Translation
settings you set the last time you translated the file or, if none
exist, the default translation for the module type.
Chapter 4� Loading Code into SoftICE 61

BETA REVIEW
Follow these guidelines when specifying the command syntax:

� Options are not required. If you specify a file name without an
option, LOADER32.EXE starts the Symbol Loader graphical interface
and opens the file.

� Specify both the /TRANSLATE and /LOAD options to force
LOADER32.EXE to translate the module before loading it.

� Do not use the /EXPORTS or the /LOGFILE options with any other
option.

Note: If you specify an option, LOADER32.EXE does not display the Symbol
Loader graphical interface unless it encounters an error. If
LOADER32.EXE encounters an error, it displays the error in the
Symbol Loader window.

Using the Symbol Loader Command-Line Utility
NMSYM is a utility program that lets you create a batch process to
translate and load symbol information for use with SoftICE or other
programs that use the NM32™ symbol table file format. NMSYM
provides a series of command options analogous to features within
SoftICE Symbol Loader (Loader32.exe) that perform the following
functions:

Table 4-3. NMSYM Command-Line Options

Function NMSYM Options

Translate and load symbol information for an individual
module

/TRANSLATE or /TRANS
/LOAD
/SOURCE
/ARGS
/OUTPUT or /OUT
/PROMPT

Load and unload groups of symbol tables and module
exports

/SYMLOAD or /SYM
/EXPORTS or /EXP
/UNLOAD

Save the SoftICE history buffer to a file /LOGFILE or /LOG

Obtain product version information and help /VERSION or /VER
/HELP or /H
62 Using SoftICE

BETA REVIEW
NMSYM Command Syntax

Use the following syntax for NMSYM.EXE:

NMSYM [option(s)] <module-name>

Where:

� Options are specified by using a slash (/) followed by the option
name.

� <module-name> is the name of the module you want to translate or
load.

The following example shows a valid command line:

NMSYM /TRANSLATE C:\MYPROJ\MYPROJECT.EXE

Using Option and File-list Specifiers

Many options include additional option and file-list specifiers. Option
specifiers modify an aspect of the option and file-list specifiers specify
operations on a group of files.

The syntax for option specifiers is as follows:

/option:<option-specifier>[,<option-specifier>]

The option is followed by a colon (:), which, in turn, is followed by a
comma delimited list of specifiers. The following example uses the /
TRANSLATE option with the SOURCE and PACKAGE specifiers to instruct
NMSYM to translate source and symbols, then package the source files
with the NMS symbol table:

/TRANSLATE:SOURCE,PACKAGE

The syntax for file-list specifiers is as follows:

/option:<filename|pathname>[;<filename|pathname>]

The following example uses the /SOURCE option with three path-list
specifiers. NMSYM searches the paths in the path-list specifiers to locate
source code files during translation and loading:

/SOURCE:c:\myproj\i386;c:\myproj\include;c:\msdev\include;
Chapter 4� Loading Code into SoftICE 63

BETA REVIEW
The option and file list specifiers are listed here and described on the
pages that follow.

� /TRANSLATE
� /LOAD
� /OUTPUT
� /SOURCE
� /ARGS
� /PROPMT
� /SYM(LOAD)
� /EXP(ORTS)
� /UNLOAD
� /LOG(FILE)
� /VER(SION)

Using NMSYM to Translate Symbol Information

The primary purpose of NMSYM is to take compiler generated debug
information for a module and translate it into the NM32 symbol format,
then place that information into a .NMS symbol file. To accomplish this,
use the following options and parameters on the NMSYM command line:

� Use the /TRANSLATE option to specify the type of symbol informa-
tion you want to generate.

� Use the /SOURCE option to specify the source paths that NMSYM
searches to locate source code files.

� If you want to specify an alternate filename for the .NMS file, use the
/OUTPUT option.

� Specify the name of the module that you want to translate.

NMSYM /TRANSLATE C:\MYPROJ\MYPROJECT.EXE

The following paragraphs describe the translation options. Use these
options to translate symbol information for an individual module.

/TRANSLATE Option

The /TRANSLATE :<translation-specifier-list> option lets you specify
the type of symbol information you wish to produce, as well as whether
source code is packaged with the symbol file. Other options include the
ability to force the translation to occur, even if the symbol file is already
up to date.

The /TRANSLATE option takes a variety of option specifiers, including
symbol-information, source code packaging, and a miscellaneous
specifier, ALWAYS. The following sections describe these specifiers.
64 Using SoftICE

BETA REVIEW
Symbol-information Specifiers

The following table lists optional symbol-information specifiers that
determine what symbol information is translated. Use one symbol-
information specifier only. If you do not use a specifier, NMSYM defaults
to SOURCE.

Note: Source code information does not include the source files
themselves. It is information about the source code files, such as their
names and line-number information.

Source Code Packaging Specifiers

Optional source code packaging specifiers determine whether or not
NMSYM attaches source code to the .NMS symbol file. By default,
NMSYM does the following:

� Packages the source code with the .NMS symbol files for device driver
modules, because they load before the operating system fully initial-
izes.

� Does not package the source code for applications that run after the
operating system boots.

Table 4-4. Optional Symbol-information Specifiers

Symbol-
information
Specifier

Description

PUBLICS Only public (global) symbols are included. Static functions
and variables are excluded. This option is similar to the
symbol information that can be found in a MAP file. It
produces the smallest symbol tables.

TYPEINFO Only the type information is included. Symbol information
is excluded. Use this option when you produce advanced
type information without the original source code or
debug information.

SYMBOLS Includes all symbol and type information. Source code and
line-number information is excluded. This specifier
produces smaller symbol tables.

SOURCE This is the default translation type. All symbol, type, and
source code information is included.
Chapter 4� Loading Code into SoftICE 65

BETA REVIEW
Use the following source code packaging specifiers to override these
defaults:

Note: If you package the source code with the .NMS symbol file, your code
is available to anyone who accesses the symbol table.

ALWAYS Specifier

By default, NMSYM does not translate the symbol information if it is
current. Use the ALWAYS specifier to force NMSYM to translate the
symbol information regardless of its status.

Examples: Using the /TRANSLATE Option

The following example specifies a module name without the /
TRANSLATON option. Thus, the translation is performed using the
default options for the module type.

NMSYM myproj.exe

Note: For Win32 applications or DLLs, the default is
/TRANSLATE:SOURCE,NOPACKAGE.
For driver modules, the default is
/TRANSLATE:SOURCE:PACKAGE.

The following example translates symbol information for a VxD. It uses
the SYMBOLS specifier to exclude information related to the source code
and the /NOPACKAGE specifier to prevent NMSYM from packaging
source code.

NMSYM /TRANSLATE:SYMBOLS,NOPACKAGE c:\myvxd.vxd

The following example uses the default options for the module type and
uses the /ALWAYS specifier to force NMSYM to translate the symbol
information into a .NMS symbol file.

NMSYM /TRANSLATE:ALWAYS myproj.exe

Table 4-5. Optional Source Code Packaging Specifiers

Source Code
Packaging
Specifier

Description

PACKAGE Include source files with the .NMS symbol file.

NOPACKAGE Do not include source files with the .NMS symbol file.
66 Using SoftICE

BETA REVIEW
/SOURCE Option

Use the /SOURCE :<path-list> option to specify the source paths that
NMSYM should search to locate source code files. At translation time
(PACKAGE only) or module load time (/LOAD or /SYMLOAD), NMSYM
will attempt to locate all the source files specified within the NMS symbol
table. It will do a default search along this path to locate them.

The path-list specifier is one or more paths concatenated together. Each
path is separated from the previous path by a semi-colon ';'. The /
SOURCE option may be specified one or more times on a single
command-line. The order of the /SOURCE statements, and the order of
the paths within the path-list determines the search order.

Examples: Using the /SOURCE Option

The following example specifies two paths for locating source files.

NMSYM /TRANSLATE:PACKAGE /
SOURCE:c:\myproj\i386;c:\myproj\include; myproj.exe

The following example specifies two sets of source paths.

NMSYM /TRANS:PACKAGE /SOURCE:c:\myproj\i386;c:\myproj\include;
/SOURCE:c:\msdev\include; myproj.exe

The following example specifies the base project source path and uses the
DOS replacement operator % to take the path for include files from the
standard environment variable INCLUDE=. The path-list expands to
include c:\myproj\i386 and every path listed in the INCLUDE=
environment variable.

NMSYM /TRANS:PACKAGE /SOURCE:c:\myproj\i386;%INCLUDE%
myproj.exe

Note: In the event that a source code file cannot be found, the /PROMPT
switch determines whether the file will be skipped, or if you will be
asked to help locate the file.

/OUTPUT Option

NMSYM derives the output file name for the NMS symbol table by taking
the root module name and appending the standard file extension for
NM32 symbol tables, NMS. Secondly, the path for the NMS file is also the
same as path to the module being translated. If you need to change the
default name or location of the NM32 symbol table file, then use the
/OUTPUT:<filename> option to specify the location and name. If you
specify a name, but do not specify a path, the path to the module will be
used.
Chapter 4� Loading Code into SoftICE 67

BETA REVIEW
Examples: Using the /OUTPUT Option

In the following example, the path of the NMS file is changed to a
common directory for NM32 symbol tables.

NMSYM /OUTPUT:c:\NTICE\SYMBOLS\myproj.nms
c:\myproj\myproject.exee

/PROMPT Option

NMSYM is a command-line utility designed to allow tasks of symbol
translation and loading to be automated. As such, you probably do not
desire to be prompted for missing source files, but there are cases where it
might be useful. Use the /PROMPT option to specify that NMSYM should
ask for your help in locating source code files when you use the /
TRANSLATE:PACKAGE, /LOAD, or /SYMLOAD options.

Using NMSYM to Load a Module and Symbol Information

Like translation, the /LOAD functionality of NMSYM is designed to work
on a specific module that is specified using the module-name parameter.
This module is one which will be translated and loaded. If you do not
need to translate or load and execute a module, then the /SYMLOAD
option may be a better choice.

The following example shows how to use NMSYM to translate, load, and
execute a module:

NMSYM /TRANS:PACKAGE /LOAD:EXECUTE myproj.exe

The next example shows the alternate functionality of loading a group of
pre-translated symbol files using the /SYMLOAD option:

NMSYM /SYMLOAD:NTDLL.DLL;NTOSKRNL.NMS;MYPROJ.EXE

In the preceding example, three symbol tables will be loaded, but
translation will not be performed, even if the modules corresponding
NMS is out of date. Also, MYPROJ.EXE will not be executed so that it can
be debugged.

/LOAD Option

The /LOAD: <load-specifier-list> option allows you to load a modules
NM32 symbol table into SoftICE, and optionally, execute the module so
it can be debugged.

You can use the following specifiers with the /LOAD option.
68 Using SoftICE

BETA REVIEW
Load-Type Specifiers

One of the following options may be selected to determine how the
module and its symbol information will be loaded. The default specifier
is dependent on the type of the module, and for executables is EXECUTE.
For non-executable module types, the default is SYMBOLS.

Break-On-Load Specifiers

To enable or disable having a breakpoint set at the modules entry-point,
use one of the following specifiers.

The ability to explicitly turn module entry breakpoints on or off is
provided because the default setting of this option is dependent upon the
type of the module. For applications the BREAK option is the default. For
other module types NOBREAK is the default.

NOSOURCE Specifier

NOSOURCE prohibits the load of source code files, even if the symbol
table includes a source package or line-number information.

Table 4-6. Load-Type Specifiers

Load Type
Specifiers

Definition

SYMBOLS Only symbol information for the module will be loaded.
You may set breakpoints using this symbol information,
and when the module is loaded the breakpoints will
trigger as appropriate.

EXECUTE Symbol information is loaded and the executable is loaded
as a process so that it may be debugged.

Table 4-7. Break-On-Load Specifiers

Break on Load
Specifiers

Definition

BREAK Set a breakpoint on the module’s entry-point (WinMain,
DllMain, or DriverEntry).

NOBREAK Do not set a breakpoint on the modules entry-point.
Chapter 4� Loading Code into SoftICE 69

BETA REVIEW
Examples: Using the /LOAD Option

In the following example NMSYM will load (and by default) execute the
module MYPROJ.EXE. If the symbol table is not current, then a default
translation for the module type will be performed:

NMSYM /LOAD MYPROJ.EXE

The next example specifies that the program is to be executed, but a
breakpoint should not be set on the program entry-point. Once again, if
a translation needs to be performed, it will be the default translation for
the module type.

NMSYM /LOAD:NOBREAK MYPROJ.EXE

The next example specifies that only symbol information should be
loaded, and explicitly specifies the PUBLICS translation type:

NMSYM /TRANS:PUBLIC /LOAD:SYMBOLS MYPROJ.DLL

/ARGS Option

The /ARGS:<program-argumens> option is used to specify the program
arguments that will be passed to an executable module. This option is
only useful when used with the /LOAD:EXECUTE option.

The string program-arguments defines the program arguments. If it
contains white-space, then you should surround the entire option in
double quotes (").

Examples: Using the /ARGS Option

In the following example, the MYPROJ.EXE module is going to be loaded
for debugging, and the arguments passed to the application are
TEST.RTF.

NMSYM /LOAD:EXECUTE /ARGS:test.rtf myproj.exe

In the next example, the command-line is a bit more complicated, so we
are going to wrap the entire option in double-quotes ("):

NMSYM /LOAD:EXECUTE "/ARGS:/PRINT /NOLOGO test.rtf" myproj.exe

Using the double quotes around the option prevents NMSYM from
becoming confused by the white-space that appears within the program
arguments: /PRINT^/NOLOGO^test.rtf.
70 Using SoftICE

BETA REVIEW
Using NMSYM to Load Symbol Tables or Exports

In addition to the translation and loading functions, NMSYM also
supplies options that allow for batch loading and unloading of both
symbol tables and exports. This is extremely useful for loading an
"environment" or related set of symbol table files. For example, if you
start SoftICE manually you can use NMSYM to give you the equivalent
functionality of the SoftICE Initialization Settings for Symbols and
Exports.

For example, you could use a batch file similar to the following to control
which symbol tables are loaded. The batch file takes one optional
parameter that determines whether the files to be loaded are for driver or
application debugging (application is the default). In both cases we are
loading exports for the standard Windows modules.

net start ntice
echo off

if "%1" == "D" goto dodriver
if "%1" == "d" goto dodriver

REM *** These are for debugging applications *** set
SYMBOLS=ntdll.dll;shell32.dll;ole32.dll;win32k.sys goto doload

:dodriver REM *** These are for debugging drivers *** set
SYMBOLS=hal.dll;ntoskrnl.exe;

:doload

NMSYM /SYMLOAD:%SYMBOLS% /
EXPORTS:kernel32.exe;user32.exe;gdi32.exe

Another benefit of using NMSYM is that it does not require explicit path
information to find NMS files or modules. If you do not specify a path,
and the specified module or NMS file cannot be found within the current
directory or the symbol table cache, then a search will be executed along
the current path.

/SYMLOAD Option

The /SYMLOAD: <module-list> option is used to load one or more
symbol tables into SoftICE. The symbol tables must have been previously
translated since this function does not perform translation.

The module-list specifier may specify NMS files or their associated
modules, with or without explicit paths to the files. If you do not specify
an explicit path for the module, then NMSYM will attempt to find the
file in the current directory, in the symbol table cache, or on the system
path. If you specify an absolute or relative path for the module then no
search will be performed.
Chapter 4� Loading Code into SoftICE 71

BETA REVIEW
Examples: Using the /SYMLOAD Option

The following example uses the /SYMLOAD option to load the symbol
tables typically used for debugging OLE programs. It does not specify any
paths, so a search will be performed (as necessary).

NMSYM /SYMLOAD:ole32.dll;oleaut32.dll;olecli32.dll

/EXPORTS Option

The /EXPORTS: <module-list> option is used to load exports for one or
more modules into SoftICE. Exports are lightweight symbol information
for API's exported from a module (usually a DLL, but EXEs can also
contain exports).

The module-list specifier may specify modules with or without explicit
paths. If you do not specify an explicit path for the module, then
NMSYM will attempt to find the file in the current directory, in the
system directory, or on the system path. If you specify a absolute or
relative path for the module then no search will be performed.

Examples: Using the /EXPORTS Option

The following example uses the /EXPORTS option to load the exports for
modules typically used when debugging OLE programs. It does not
specify any paths, so a search will be performed, as necessary.

NMSYM /EXPORTS:ole32.dll;oleaut32.dll;olecli32.dll

Using NMSYM to Unload Symbol Information

NMSYM provides the /UNLOAD option so that you can
programmatically remove symbol information for a related set of symbol
tables and/or exports. This can be used to save memory used by
unneeded symbol tables.

/UNLOAD Option

The /UNLOAD: <module-list> option may specify either symbol tables
or export table names. The name of a symbol table or export table is
derived from the root module-name, without path or extension
information. For flexibility and to support future table naming
conventions you should specify any path or extension information that
is relevant to uniquely distinguish the table.
72 Using SoftICE

BETA REVIEW
Examples: Using the /UNLOAD Option

The following example is the reverse of the examples provided in the /
SYMLOAD and /EXPORTS sections:

NMSYM /UNLOAD:ole32.dll;oleaut32.dll;olecli32.dll

SoftICE will find the table that corresponds to the specified module name
and remove the table (if possible) and free any memory in use by that
symbol table.

Note: SoftICE attempts to unload a symbol table by default. If the specified
symbol table does not exist then SoftICE attempts to unload an
export table with that name.

Using NMSYM to Save History Logs

NMSYM provides the ability to save the SoftICE history buffer to a file
using the /LOGFILE option. This operation is equivalent to the Symbol
Loader 'Save SoftICE History As..." option. NMSYM supports the ability to
append to an existing file using the APPEND specifier.

/LOGFILE Option

The /LOGFILE: <filename>[,logfile-specifier-list] option is the path and
filename of the file the history buffer will be written to. If no path is
specified the current directory will be assumed.

LogFile Specifiers

APPEND lets you append the current contents of the History buffer to an
existing file. The default is to overwrite the file.

Examples: Using the /LOGFILE Option

The following example will create/overwrite the MYPROJ.LOG file with
the current contents of the SoftICE history buffer:

NMSYM /LOGFILE:myproj.log

The next example will create/append the current contents of the SoftICE
history buffer to the file MYPROJ.LOG:

NMSYM /LOGFILE:myproj.log,APPEND

Caution: NMSYM will not ask you if you want to overwrite an existing
file. It will automatically do so.
Chapter 4� Loading Code into SoftICE 73

BETA REVIEW
Getting Information about NMSYM

To get information about NMSYM, use the /VERSION and /HELP options.

/VERSION Option

Use the /VERSION option to obtain version information for NMSYM,
SoftICE, as well as the translator and symbol engine version numbers. For
SoftICE, Loader32 and NMSYM to work together correctly, these versions
must be compatible. Each product negotiates and verifies version
numbers with the other products to insure that each can work together.

/HELP Option

Use the /HELP option to obtain command-line syntax, options,
specifiers and option/specifier syntax.
74 Using SoftICE

BETA REVIEW
Chapter 5

Navigating Through SoftICE
� Introduction

� Universal Video Driver

� Popping Up the SoftICE Screen

� Disabling SoftICE at Startup

� Stopping SoftICE at Startup

� Using the SoftICE Screen

� Using the Command Window

� Using the Code Window

� Using the Locals Window

� Using the Watch Window

� Using the Register Window

� Using the Data Window

� Using the Stack Window

� Using the Thread Window

� Using the Pentium III/IV Register Window

� Using the FPU Stack Window

Introduction
This chapter describes how to use the SoftICE screen and its windows.
The SoftICE windows are described in order of importance.

If you are new to SoftICE, read this chapter thoroughly, then use it as a
reference.
 75

BETA REVIEW
Universal Video Driver
SoftICE uses a Universal Video Driver (UVD) to display on the user’s
desktop. The UVD allows SoftICE to draw directly in linear frame
memory. To use the UVD, SoftICE requires that the video hardware and
video driver support Direct Draw. Table 5-1 describes the commands and
key sequences you can use to move, size, and customize the SoftICE
display window. Figure 5-12 displays the keypad functions that
reposition the SoftICE window when you hold down the <Ctrl>-<Alt>
keys.

Table 5-1 SoftICE Commands and Keystrokes

Command/Keystrokes Result

LINES n Where n is 25-128, selects the number of lines in the
SoftICE window.

WIDTH n Where n is 80-160, selects the number of columns in
the SoftICE window.

SET FONT n Where n is 1, 2, or 3, selects a font.

SET ORIGIN x y Where x and y are pixel coordinates, locates the
window

SET FORCEPALETTE
[ON|OFF]

When On, SoftICE will prevent the system colors
(palette indices 0-7 and 248-255) from being
changed in 8-bpp mode. This ensures that the
SoftICE display can always be seen. This is OFF by
default.

SET MAXIMIZE [ON |
OFF]

When On, SoftICE resizes its window to the
maximum possible size, based on font, number of
lines, and video memory size. When Off, changing a
display format parameter (font, number of lines, etc.)
will not cause SoftICE to resize its window.

SET MONITOR n Where n is 0 to the number of UVD-enabled video
cards installed. Used without supplying an n-value,
this command returns the list of video drivers that
SoftICE is aware of, and tells you which one is active.
Passing in an n-value tells SoftICE to switch the
output to the specified monitor. This command can
only be used for UVD displays, not VGA or Mono.

Control-Alt- cursor key Moves the SoftICE window by a character increment.

Control-Alt-Home Resets the SoftICE window position to (0, 0)

Control-Alt-End Moves the SoftICE window to the bottom left.

Control-Alt-Page Up Moves the SoftICE window to the top right.
76 Using SoftICE

BETA REVIEW
Figure 5-12 SoftICE Repositioning Keypad Functions

Setting the Video Memory Size

When using the UVD, SoftICE must save the existing contents of the
frame buffer so it can be restored later. The amount of memory required
depends on the video mode, the number of lines used by SoftICE. In any
case, the amount of memory required cannot exceed the amount of
memory on your video card. By default, SoftICE reserves 2MB, but you
can modify this using the Symbol Loader (go to Edit -> SoftICE
Initialization Settings and change the “Video memory size” setting).

Control-Alt-Page Down Moves the SoftICE window to the bottom right.

Control-Alt-5 Moves the SoftICE window to the center of the
screen.

Control-L Refreshes the SoftICE display. Useful in the rare case
where the part of the display used by SoftICE is
overlapped by a bitblt operation that was running
when SoftICE popped up.

Control-C Centers the SoftICE display window.

Table 5-1 SoftICE Commands and Keystrokes (Continued)

Command/Keystrokes Result
Chapter 5� Navigating Through SoftICE 77

BETA REVIEW
Popping Up the SoftICE Screen
Once loaded, the SoftICE screen will automatically pop up in the
following situations:

� When SoftICE loads. By default, the SoftICE initialization string
contains the X (Exit) command, so it immediately closes after
opening. Refer to Modifying SoftICE Initialization Settings on page 191.

� When you press Ctrl-D. This hot-key sequence toggles the SoftICE
screen on and off.

Tip Use the ALTKEY
command to change
the SoftICE default
pop-up key (Ctrl-D).

� When breakpoint conditions are met.

� When SoftICE traps a system fault.

� When a system crash in the Windows NT family results in “Blue
Screen” Mode.

When the SoftICE screen pops up, all background activity on your
computer comes to a halt, all interrupts are disabled, and SoftICE
performs all video and keyboard I/O by accessing the hardware directly.

Disabling SoftICE at Startup
If SoftICE was installed as a boot or system driver with the Windows NT
family, you can disable it at startup. Press the Escape key when the
following message appears at the bottom of the display:

Press Esc to Modify DriverStudio Startup Environment

Stopping SoftICE at Startup
If SoftICE was installed as a boot or system driver with the Windows NT
family, you can stop it at startup. Press the ESC key when the
DriverStudio environment message appears, check the Stop SoftICE On
Load check-box.
78 Using SoftICE

BETA REVIEW
Using the SoftICE Screen
The SoftICE screen serves as the central location for debugging your
code. It provides several windows and a Help line to view and control
various aspects of your debugging session. These windows are listed
below:

By default, SoftICE displays the Help line and the Command, Code, and
Locals windows. You can open and close the remaining windows as
necessary. Figure 5-1 illustrates a typical SoftICE window.

Table 5-2. SoftICE Windows

SoftICE Windows Use

Command window Enter user commands and display information.

Code window Display unassembled instructions and/or source code.

Locals window Display locals for the current stack frame.

Watch window Display the value of the variables watched with the
WATCH command.

Register window Display and edit the current state of the registers and
flags.

Data window Display and edit memory.

Stack Window Display call stack for DOS programs, Windows tasks,
and 32-bit code

Thread Window Display information on threads for a given process

PIII Register Window Display Pentium III registers

FPU Stack window Display the current state of the FPU (Floating Point
Unit) stack /MMX registers.

Help line Provide information about SoftICE commands.
Chapter 5� Navigating Through SoftICE 79

BETA REVIEW
Figure 5-1. Typical SoftICE Window

Register window

Data windows

Code window

Command window

Locals window

Watch window

Thread window

Stack window
80 Using SoftICE

BETA REVIEW
Resizing the SoftICE Screen

By default, the SoftICE screen uses a total of 25 lines to display
information in the various windows. If you are using VGA or Text Mode,
you can use the LINES command to switch the total lines for the SoftICE
screen to 43, 50, or 60 lines instead of the standard 25 lines. If you are
using UVD you can set the total lines to any value from 25 to 100.
Monochrome screens limit you to 25 lines. The WIDTH command allows
you to set the number of display columns between 80 and 160.

LINES 60
WIDTH 80

The SoftICE display can also be moved on the Windows desktop. Use the
Ctrl-Alt and cursor keys to move the SoftICE display. Use the Ctrl-Alt-
Home keys to return the display to the 0,0 position, or the Ctrl-Alt-C keys
to center the display.

Controlling SoftICE Windows

You can do the following to the SoftICE windows:

� Open and close all the windows except the Command window.

� Resize the Code, Data, Locals, Stack, Thread, and Watch windows.

� Scroll the Code, Command, Data, Locals, Stack, Thread, and Watch
windows.

SoftICE provides two methods for controlling these windows: mouse and
keyboard input.

Opening and Closing Windows

To open a SoftICE window, use the appropriate command listed in the
following table. If you specify -o, the window is forced open. If you
specify -c, and the window is already open, it is forced closed. These
options are useful for macros, as they allow you to set the screen layout
to a known state.

To use your mouse to close a window, select the line below the window
you want to close and drag it up past the top line of the window.
Chapter 5� Navigating Through SoftICE 81

BETA REVIEW
Resizing Windows

To resize a window, drag the line at the bottom of the window you want
to resize either up or down. You can also use the same commands that
you use for opening and closing windows to resize the windows. Simply
type the command followed by a decimal number that represents the
number of lines you want to display in the window.

WD 7

Note that the number of lines in the Command window automatically
increases or decreases when you resize a window. Although you cannot
explicitly resize the Command widow, changing the size of other
windows in your display automatically resizes the Command window.

You can also resize by relative amounts by using a “+” or “-” sign. For
example, WD +7 will enlarge the data window by 7 lines.

Forcing Windows Open and Closed

To enhance SoftICE Macro writing, you can set the state of a window to a
known value, open or closed, via the -o and -c flags.

Table 5-3. SoftICE Window Commands

Command Window

WC Code

WD.# Data

Where # is a number 0 through 3 to open that specified data
window. Use without 0-3 extension to switch to or open the
next sequential Data window.

WF FPU Stack

WL Locals

WR Register

WW Watch

WS Stack

WT Thread

WX Pentium III Register
82 Using SoftICE

BETA REVIEW
Moving the Cursor Among Windows

The cursor is located in the Command window by default. To move the
cursor to another window, click the mouse in the window where you
want to place the cursor. If the cursor is in the Command or Code
windows, you can use one of the Alt key combinations in the following
table to move the cursor. Repeat the same Alt key combination to return
the cursor to the Command or Code window.

Scrolling Windows

You can scroll the Code, Command, Data, Locals, Stack, Thread, and
Watch windows. The FPU Stack and Register windows are not scrollable,
because they are limited to four and three lines respectively.

SoftICE provides for three window scrolling methods: key sequences,
mouse scroll arrows, and use of the “wheel” mouse. The following table
describes how to use key sequences and scroll arrows to scroll windows.

Note: The key sequences for some windows vary. For example, some
windows do not let you jump to the first or last lines of the file. See
the sections that describe the individual windows for specific infor-
mation about scrolling particular windows.

Table 5-4. SoftICE Window Alt Key Combinations

Window Alt Key Combination

Code Alt-C

Data Alt-D

FPU Stack Cannot move the cursor to the FPU Stack window.

Locals Alt-L

Register Alt-R

Stack Alt-S

Thread Alt-T

Watch Alt-W
Chapter 5� Navigating Through SoftICE 83

BETA REVIEW
User-definable Pop-up Menus

SoftICE allows you to customize the content of the pop-up menus that
appear when you right-click with the mouse. The menu entries are
defined in winice.dat. To access the editor and customize the pop-up
menus, select Advanced from the SoftICE Initialization menu on the
Configuration screen.

Table 5-5. SoftICE Window Scrolling Methods

Scroll Direction and
Distance

Key
Sequence Mouse Action

Scroll the window to the
previous page.

PageUp Click the innermost up scroll
arrow

Scroll the window to the next
page.

PageDown Click the innermost down
scroll arrow

Scroll the window to the
previous line.

UpArrow Click the outermost up scroll
arrow

Scroll the window to the next
line.

DownArrow Click the outermost down
scroll arrow

Jump to the first line of the
source file.

Home Not supported.

Jump to the last line of the
source file.

End Not supported.

Scroll the window left one
character.

LeftArrow Click the left scroll arrow.

Scroll the window right one
character.

RightArrow Click the right scroll arrow.
84 Using SoftICE

BETA REVIEW
Figure 5-2. Pop-up Menu Editor

The format of entries in winice.dat is as follows:

MENU=Description, Command Field, [Modifier]

� Description is the text that will appear on the menu. It can contain
any valid character, can have spaces, and must have a maximum
length of 13 characters. All trailing spaces are removed.

� Command Field is the SoftICE command, macro, expression evaluator
command, or predefined command to be executed upon selection of
that menu item. You must use full command names and may not use
shortcuts. In addition you can add a special Modifier flag, %cp%,
which will copy the data or text that is underneath the cursor and
paste it into the string at that position.

If you have a line of the screen that reads 80001000 ntoskrnl!kitrap0E
and you have defined a menu item as what %cp%, you can place the
mouse on 80001000 and select that menu item to submit the command
what 80001000 to SoftICE.
Chapter 5� Navigating Through SoftICE 85

BETA REVIEW
In addition, several predefined commands have been provided for
backwards compatibility with the menus in earlier versions of SoftICE.

The predefined commands are as follows:

� NMPD_COPY — Copies the text under the cursor into a paste buffer.

� NMPD_PASTE — Pastes the text from the paste buffer into the active
location.

� NMPD_COPYANDPASTE — Copies the text from under the cursor
and pastes it into the active location.

� NMPD_DISPLAY — Displays the address under the cursor in the Data
window.

� NMPD_UNASSEMBLE — Unassembles the address under the cursor.

� NMPD_WHAT — Issues the WHAT command for the item under the
cursor.

� NMPD_PREV — Causes the Data window to step back to the previous
address it displayed. This is useful for walking pointer chains.

The following predefined commands are not on the default menu set,
but can be used in your own custom menus.

� NMPD_DATAREALIGN — Causes the Data window to be realigned
such that the address currently under the mouse (in the Data
window) becomes the new base address of the Data window.

Inline Editing

SoftICE is able to do inline editing of variables displayed in either the
Locals Window (WL) or the Watch Window (WW).

Usage

� Navigate to the variable you wish to edit in either the Locals Window
or the Watch Window.

� Use the hotkey sequence, Alt-E, to launch Inline Editing.

� Edit your data.

� Press either Enter to store your data, or Esc to abort your changes.
86 Using SoftICE

BETA REVIEW
Navigation Keys

The following keys are available for the Inline Editing feature:.

Notes
All input is done in hex.

When you enter Inline Editing, the information to the right of the
field being edited will be overwritten until you complete your edit.
This is the intended functionality.

If you start typing in the edit field, the entire entry will be erased.

You will enter Overtype Mode if you press the left/right arrow, Home,
or End keys .

Copying and Pasting Data

If you have a mouse, you can copy and paste data among windows. This
is useful for copying addresses and data into expressions. To copy and
paste data, do the following:

1 Select the data you want to copy.

2 Press the right mouse button to display the following list of available
commands.

3 Click the left mouse button to select the command (Copy, Copy and
Paste, or Paste) you want to use. The following table describes these
commands.

Table 5-6. Inline Editing Commands

Command Action

Enter Stores your modifications.

Esc Aborts any changes.

Left/Right
Arrow

Changes your position within the edit field; additionally, pressing
either of these keys puts you into Overtype Mode.

Home Moves to start of field; additionally puts you into Overtype Mode.
Chapter 5� Navigating Through SoftICE 87

BETA REVIEW
Entering Commands from the Mouse

SoftICE provides shortcuts for entering the D, U, and WHAT commands
with your mouse. (Refer to the SoftICE Command Reference for more
information about these commands.)

To use your mouse to enter one of these commands, do the following:

1 Select the data you want the command to act upon.

For example, select an expression to identify.

2 Click the right mouse button to display the list of available com-
mands.

3 Click the left mouse button to select the command you want to use.
The following table describes these commands.

Table 5-7. Copy and Paste Commands

Command Description

Copy Copies the selected item to the Copy-and-Paste buffer.

Copy and
Paste

Copies the selected item and pastes it to the location of the
cursor.

Paste Pastes the contents of the Copy-and-Paste buffer to the
location of the cursor.

Table 5-8. SoftICE Mouse Commands

Mouse
Command

SoftICE
Command
Equivalent

Description

Display D Displays the memory contents at the specified
address.

Un-
Assemble

U Displays either source code or unassembled
code at the specified address.

What WHAT Determines if a name or expression is a known
type.

Previous N/A Undoes the previous mouse command.
88 Using SoftICE

BETA REVIEW
Obtaining Help

SoftICE provides you with two methods for obtaining help online while
debugging your module: the Help line and H command.

Using the Help Line

The bottom line of the screen always contains the Help line. This line
updates as you type characters on the command line. The Help line
provides several different types of information, as follows:

� When the characters you type do not specify a complete command,
the Help line displays all the valid commands that start with the
characters you typed.

� When the characters you type match a command, the Help line
displays a description of the command.

� If you enter a space after a command, the Help line displays the
syntax for that command.

� If you are editing in the Register or Data windows, the Help line
contains the valid editing keys for that window.

Using the H Command

Use the H command to provide general help on all the SoftICE
commands or detailed help on a specific command. To display a brief
description of all the SoftICE commands by function, enter the H
command with no parameters.

To display detailed help on a specific command, type the H command
and specify the command on which you want to receive help as the
parameter. SoftICE displays a description of the command, the command
syntax, and an example.

The following example displays help for the BPINT command:

:H BPINT
Breakpoint on interrupt
BPINT interrupt-number {IF expression] [DO bp-action]
ex: BPINT 50
Chapter 5� Navigating Through SoftICE 89

BETA REVIEW
Using the Command Window
The Command window lets you enter commands and displays
information about your debugging session. The contents of the
Command window are saved in the SoftICE history buffer.

The Command window is always open and is at least two lines long.
Although you cannot explicitly resize the Command widow, changing
the size of other windows in your display automatically resizes the
Command window.

Scrolling the Command Window

To scroll the Command window, either use the scroll arrows or the keys
listed in the following table.

Entering Commands
Tip As you type
characters, the Help
line displays the list of
valid commands that
start with those
characters. When only
one command displays,
you can press the space
bar to complete the
command
automatically. SoftICE
fills in the remaining
characters of the
command followed by
a trailing space.

You can enter commands whenever the cursor is in the Command
window or the Code window.

To enter a command, type the command and press the Enter key to
execute it.

When you type most SoftICE commands in the Command window,
related information about the command automatically displays on the
line beneath the command. If information displays on the last line of the
window, the window scrolls. If all the information cannot fit in the
window, the following prompt appears on the help line:

Any Key To Continue, ESC To Cancel

To disable this prompt, use the following command:

SET PAUSE OFF

Table 5-9. Command Window Scrolling Keys

Function Key

Scroll the history buffer to the previous page. PageUp

Scroll the history buffer to the next page. PageDown

Scroll the history buffer to the previous line. UpArrow

Scroll the history buffer to the next line. DownArrow
90 Using SoftICE

BETA REVIEW
Command Syntax

SoftICE commands share the following syntax and rules:

� All commands are text strings of one to six characters in length and
are not case sensitive.

� All parameters are either ASCII strings or expressions.

� An address in SoftICE can be a selector:offset, a segment:offset, or just
an offset.

� Expressions in SoftICE are comprised of the following:
� Grouping symbols
� Numbers in hexadecimal or decimal format
� Addresses
� Line numbers
� String literals
� Symbols
� Operators
� Built-in functions
� Registers.

Example: (1+2)*3 is an expression.

Any command that accepts a number or an address can accept an
arbitrarily complex expression. Use the ? command to display the
value of an expression. In addition, breakpoints can be conditionally
based on the result of an expression; that is, the breakpoint only
triggers when the expression evaluates to non-zero (TRUE).

TAB AutoCompletion
When entering commands, frequently you have to enter a parameter
from a limited list of possibilities. For example, symbol names are
often used with commands, and are also often quite long. SoftICE
can complete some parameters for you using its TAB
AutoCompletion feature. This feature functions whenever you press
the TAB key while typing a parameter for a command.

If SoftICE finds more than one match for the partially-typed name, it
will complete as many characters in the name as are common to all
the possible matches, and then display the list of matches in the help
text area below the command prompt. If you press TAB again, the list
of matches will be displayed in the command window itself, which is
helpful when the list of matches is too long for the help text bar.
Chapter 5� Navigating Through SoftICE 91

BETA REVIEW
Some SoftICE commands imply a certain list of parameters. The FILE
command, for instance, is used to select and display one of the
currently loaded source files. In these cases, the TAB AutoCompletion
feature searches the list of possibilities implied by the command. For
all other commands, SoftICE will use the symbols from the current
symbol table, and all of the loaded export tables.

Using Function Keys

SoftICE provides several function key assignments to save you time when
entering commonly-used SoftICE commands. These assignments are
shown in the following table.

Table 5-10. SoftICE Function Key Assignments

Function Key Command Function

F1 H Display Help

F2 WR Display or hide the register window

F3 SRC Switch among source code, mixed code, and
disassembled code

F4 RS Show program screen

F5 X Go

F6 EC Move the cursor to or from the Code window

F7 HERE Execute to the cursor

F8 T Single step

F9 BPX Set an execution breakpoint on the current line

F10 P Step over

F11 G @SS:EIP Go to

F12 P RET Return from the procedure call

Shift-F3 FORMAT Change the format for the active Data window

Alt-F1 WR Open or close the Register window

Alt-F2 WD Open or close the Data window

Alt-F3 WC Open or close the Code window

Alt-F4 WW Open or close the Watch window
92 Using SoftICE

BETA REVIEW
You can modify the commands assigned to these keys or assign
commands to additional function keys. Refer to Modifying Keyboard
Mappings on page 203.

Editing Commands

Use the following keys to edit the command line.

Recalling Commands

SoftICE remembers the last thirty-two commands you typed in the
Command window. You can recall these commands for editing and
execution from within either the Command or Code windows.

Alt-F5 CLS Clear the Command window

Alt-F11 dd dataaddr->0 Indirect first dword in the Data window.

Alt-F12 dd dataaddr->4 Indirect second dword in the Data window.

Table 5-11. SoftICE Command Line Edit Commands

Editing Function Key

Move the cursor to column 0 of the command line. Home

Move the cursor past the last character of the command line. End

Toggle insert mode. When in insert mode, the cursor displays as a
block cursor and the characters entered are inserted at the current
cursor position, shifting the text to the right by one space. When
not in insert mode, a character entered overwrites the character at
the cursor position.

Insert

Delete the character at the current cursor position and shift text to
the left by one space.

Delete

Delete the previous character. Bksp

Cancel command line. Esc

Move the cursor horizontally within the command line. Arrow
Keys

Table 5-10. SoftICE Function Key Assignments (Continued)

Function Key Command Function
Chapter 5� Navigating Through SoftICE 93

BETA REVIEW
Use the following keys to recall a command from within the Command
window.

Note: Prefixes are supported. For example, if you type the letter A, the
UpArrow only cycles through commands that start with the letter A.

Use the following keys to recall a command from within the Code
window.

Regular Expressions in SoftICE

A few of the SoftICE commands (SYM, EXP, FILTER, HS, and TYPES)
support using regular expressions to search for text. Regular expressions
are a complex subject, and a full definition is beyond the scope of this
manual. This section, however, will probably be more than sufficient to
get you comfortable using regular expressions in SoftICE. If you want
more information on regular expressions, a number of references are
available both in print and on the Web.

SoftICE uses a consistent syntax for all commands that accept regular
expressions. In order to differentiate between a regular expression and a
plain text search pattern, regular expressions must always be enclosed in
slash (/) characters. If a regular expression contains spaces anywhere, the
whole regular expression, slashes and all, must also be enclosed in
double-quotes so that the SoftICE command parser will tokenize it
properly.

Regular expressions are a combination of ordinary and special characters.
The ordinary characters match themselves, and are defined simply as any
character that is not a special character. Table 5-14 on page 95 lists the
supported special characters.

Table 5-12. SoftICE Command Window Recall Commands

Function Key

Get the previous command from the command history buffer. UpArrow

Get the next command from the command history buffer. DownArrow

Table 5-13. SoftICE Code Window Recall Commands

Function Key

Get the previous command from the command history buffer. Shift-
UpArrow

Get the next command from the command history buffer. Shift-
DownArrow
94 Using SoftICE

BETA REVIEW
Note: Regular expression support is case-insensitive by default. Use the SET
CASESENSITIVE command to toggle this property on and off.

Generally any special character can be escaped with a backslash (\)
character, and it will be treated as an ordinary character instead.

Table 5-14. Special Characters

Character Matches Example

. Any single character /Foo./ would match “FooA”,
“FooB”, etc.

* Zero or more of the
previous character

/Fo*/ would match “F”, “Fo”,
“Foooooooo”.

+ One or more of the
previous character

/Fo+/ would match “Fo”,
“Foooo”, but not “F”.

? Zero or one of the
previous character

/Fo?/ would match “F” or “Fo”,
but not “Foo”.

() Grouping /(Foo|bar)/ would match “Foo”
or “bar”.

[] Any character inside
the brackets

/[fo]*/ would match “foo”.
/[0..9]/ would match any digit
from 0 to 9.

[^] Any character not
inside the brackets

/[^0..9abcdef]/ would match
any character which is not a
valid hex digit.

[x-y] Any character within
the range from x to y
(inclusive)

/[a-z]/ would match any
character from a to z, inclusive.

{min,max} Range of occurrences /(foo){3}/ would match
“foofoofoo”.
/(bar){1,2}/ would match “bar”
or “barbar”.
/(foo){1,}/ would match one or
more “foo”s together.

^ Beginning of data
string (must be first
character in pattern)

/^foo/ would match “foo” only
at the beginning of a string.

$ End of data string
(must be last character
in pattern)

/foo$/ would match “foo” only
at the end of a string.
Chapter 5� Navigating Through SoftICE 95

BETA REVIEW
A number of “character classes” are also supported. These are used as
shorthand for sets of characters. Character classes are only valid when
used within separate enclosing brackets. Table 5-15 on page 96 lists the
suppoted character classes.

Using Run-time Macros

Macros are user-defined commands that you use in the same way as
built-in commands. The definition, or body, of a macro consists of a
sequence of command invocations. The allowable set of commands
includes other user-defined macros and command-line arguments.

Table 5-15. Character Classes

Class Matches Example

[:alnum:] Any alphanumeric
character

Equivalent to [A-Za-z0-9]
/CR[[:alnum:]]/ would match
“HalpCr4Exists”.

[:alpha:] Any alphabetic
character

Equivalent to [A-Za-z]
/Config[[:alpha:]]/ would
match “ConfigA” but not
“Config1”.

[:blank:] Tab and space /Test[[:blank:]]+String/ would
match “Test String”, with any
number of spaces or tabs
between the two words.

[:cntrl:] Any control character

[:digit:] Any decimal digit

[:graph:] Any printable character that is not a space

[:lower:] Any lowercase alphabetic character

[:print:] Any printable character (including spaces)

[:punct:] Any punctuation character

[:space:] Any whitespace (newline, linefeed, carriage return,
formfeed, tab, and space)

[:upper:] Any uppercase alphabetic character

[:xdigit:] Any valid hex digit
96 Using SoftICE

BETA REVIEW
There are two ways to create macros. You can create run-time macros that
exist until you restart SoftICE or persistent macros that are saved and
automatically loaded with SoftICE. This section describes how to use run-
time macros. Refer to Working with Persistent Macros on page 205 for more
information about creating and using persistent macros.

Tip You can use the
MACRO command with
persistent macros to
temporarily modify
them during run time.
When you reload
SoftICE, your persistent
macros revert to their
original state.

The following table shows how to create, delete, edit, and list run-time
macros.

The body of a macro is a sequence of SoftICE commands or other macros
separated by semicolons. You are not required to terminate the final
command with a semicolon. Command-line arguments to the macro can
be referenced anywhere in the macro body with the syntax
%<parameter#>, where parameter# is a number between one and eight.

The command MACRO asm = “a %1” defines an alias for the A
(ASSEMBLE) command. The %1 is replaced with the first argument
following asm or simply removed if no argument is supplied.

If you need to embed a literal quote character (”) or a percent sign (%)
within the macro body, precede the character with a backslash character
(\). To specify a literal backslash character, use two consecutive
backslashes (\\).

Note: Although it is possible for a macro to call itself recursively, it is not
particularly useful, because there is no programmatic way to termi-
nate the macro. If the macro calls itself as the last command of the
macro (tail recursion), the macro executes until you use the ESC key
to terminate it. If the recursive call is not the last command in the
macro, the macro executes 32 times (the nesting limit).

Table 5-16. SoftICE Run-time Macros

Action Command

Create or modify a macro MACRO macro-name = “command1;command2;…”

Delete a macro MACRO macro-name *

Delete all macros MACRO *

Edit a macro MACRO macro-name

List all macros MACRO
Chapter 5� Navigating Through SoftICE 97

BETA REVIEW
The following table shows some examples of run-time macros.

Special Macros: POPUP and POPDOWN

There are two special macros that can be defined in SoftICE: the POPUP
and POPDOWN macros. If defined, these macros are executed
automatically whenever SoftICE pops up or down. These macros are
defined and deleted like any other macro.

Saving the Command Window History Buffer to a File

The SoftICE history buffer contains all the information displayed in the
Command window. Saving the SoftICE history buffer to a file is useful for
doing the following:

� Dumping large amounts of data or register values

� Disassembling code

� Listing breakpoints logged by the BPLOG expression

� Showing Windows messages logged by the BMSG command

� Saving debugging messages sent from user programs that call
OutputDebugString and kernel-mode programs that call KdPrint

Refer to History Buffer Size on page 194 for more information about
changing the size of the SoftICE history buffer.

Table 5-17. Run-time Macro Examples

Run-time Macro Commands Examples

MACRO Qexp = “addr explorer; Query %1” Qexp

Qexp 140000

MACRO 1shot = “bpx %1 do \”bc bpindex\”” 1shot eip

1shot @esp

MACRO ddt = “dd thread” ddt

MACRO ddp = “dd process” ddp

MACRO thr = “thread %1 tid” thr

thr -x

MACRO dmyfile =
“macro myfile = \”TABLE %1;file \%1\””

dmyfile mytable
myfile myfile.c
98 Using SoftICE

BETA REVIEW
To save the contents of the SoftICE history buffer to a file, do the
following:

1 Make sure the information you want to save is displaying to the
Command window, so that it is saved in the History Buffer.

For example, before dumping data, remove the Data window to force
the data to display in the Command window.Run-time

2 Open Symbol Loader.

3 Either choose SAVE SOFTICE HISTORY AS... from the File menu or click
the SAVE SOFTICE HISTORY button.

4 Use the Save SoftICE History dialog box to determine the file name
and location where you want to save the file.

Associated Commands

The following command is associated with the Command window. Refer
to the SoftICE Command Reference for more information about using this
command.

Using the Code Window
The Code window displays source code, disassembled code, or both
source and disassembled code (mixed). It also lets you set breakpoints.
(Refer to Chapter 7: on page 131 for an explanation of how to set
breakpoints.)

Controlling the Code Window

Use the following commands to control the Code window.

Table 5-18. Command Window SET Command

Command Function

SET [set variable] [ON | OFF] [value] Displays or sets user preferences.

Table 5-19. SoftICE Code Window Control Commands

Command Action

WC Opens and closes the Code window.

WC [+ | -] [num lines] Resizes the Code window.

Alt-C Moves the cursor into or out of the Code window.
Chapter 5� Navigating Through SoftICE 99

BETA REVIEW
Scrolling the Code Window

To scroll the Code window, either use the scroll arrows or the following
keys when the cursor is in the Code window.

You can also scroll the Code window when the cursor is in the Command
window, as follows.

Table 5-20. Cursor-in-Code Window Functions

Function (from within the Code window) Key Sequence

Scroll Code window to the previous page. PageUp

Scroll Code window to the next page. PageDown

Scroll Code window to the previous line. UpArrow

Scroll Code window to the next line. DownArrow

Jump to the first line of the source file. Ctrl-Home

Jump to the last line of the source file. Ctrl-End

Scroll Code window left one character (source mode only). Ctrl-LeftArrow

Scroll Code window right one character (source mode
only).

Ctrl-RightArrow

Table 5-21. Cursor-in-Command Window Functions

Function (from within the Command window) Key

Scroll the Code window to the previous page. Ctrl-PageUp

Scroll the Code window to the next page. Ctrl-PageDn

Scroll the Code window to the previous line. Ctrl-UpArrow

Scroll the Code window to the next line. Ctrl-DownArrow

Jump to the first line of the source file. Ctrl-Home

Jump to the last line of the source file. Ctrl-End

Scroll the Code window left one character (in source mode
only).

Ctrl-LeftArrow

Scroll the Code window right one character (in source mode
only).

Ctrl-RightArrow
100 Using SoftICE

BETA REVIEW
The Code Window display has a few display controls which can be used
to change its behavior at any time. These are accessed through the SET
command. Some of these controls can also be set in the Disassembly
Options page of the Settings application

Viewing Information

The Code window provides three modes to display source code,
disassembled code, or both. The following table defines these modes.

Table 5-22. Code Window Controls

Control Description

CheckStrings If enabled, the disassembler will examine operands. If an
operand appears to point to an ASCII or Unicode string, the
disassembler will display the string as a comment.

Code Controls the display of the actual code bytes for each
instruction.

DisassemblyHints When enabled, the disassembler will display directional hints
for branch instructions. If a disassembled instruction is a
branch (conditional or unconditional), the disassembler will
display a directional arrow next to the address operand,
pointing towards the destination address.

Lowercase Controls the display of disassembled instructions. If set, all
instructions will be displayed in lower case.

Selectors Controls the display of selectors in the Code Window. If set,
the selector value is shown with each disassembly address. If
clear, the selector value is shown in the Code Window’s title
bar only.

Symbols Controls the resolution of addresses to symbols in the Code
Window. If set, addresses are resolved to symbols where
possible. If clear, the numeric values are shown instead.

Table 5-23. Code Window Modes

Code Mode Description

Source If source code is available, the source file displays in the Code
window.

Mixed In mixed mode, both source lines and disassembled
instructions display in the Code window. Each source line is
followed by its assembler instructions.

Code In code mode, only disassembled instructions display in the
Code window.
Chapter 5� Navigating Through SoftICE 101

BETA REVIEW
To switch among the Code window modes, use the SRC command (F3).

Using Code and Mixed Modes

Each disassembled instruction in code or mixed mode contains the
following fields.

The following output shows a disassembled instruction:

00008:F1A19104 56 PUSH ESI

Additionally, the SoftICE disassembler automatically provides these
comments:

� INT 2E calls are commented with the kernel routine that will be
called and the number of parameters it takes. If you have loaded the
symbols for NTOSKRNL and that is the current symbol table, you will
see the name of the OS routine rather than an address.

� If an instruction uses an immediate operand that matches a Windows
NT family status code, the name of the status code displays as a
comment.

� INT 21 calls are commented with their DOS function names.

� INT 31 calls are commented with their DPMI function names.

� VxD service names are shown as code labels where appropriate.

Table 5-24. Code and Mixed Mode Fields

Field Description

Location Hexadecimal address of the instruction. If there is a public
code symbol or a user-defined name for the location, it
displays on the line above the instruction.

Code bytes Actual hexadecimal bytes of the instruction. The default is to
suppress the code bytes because they are usually not needed.
Use the SET CODE ON command to display the code bytes.

Instruction Disassembled mnemonics of the instruction. This is the current
assembly language instruction. If any of the memory address
references of the instruction match a symbol, the symbol
displays instead of the hexadecimal address. Use SET SYMBOLS
OFF to display hexadecimal addresses instead.

Comment Helpful comment from the disassembler.
102 Using SoftICE

BETA REVIEW
Viewing Additional Information

In addition to source and disassembled code, the Code window displays
the following information:

� When SoftICE pops up, the instruction located at the current EIP is
highlighted in bold. If the instruction is a relative jump, the
disassembler’s comment field contains either the string JUMP or NO
JUMP, indicating whether or not the jump will be taken. For the
JUMP string, an up or down arrow indicates where the jump is going:
backwards (JUMP ↑) or forwards (JUMP ↓). Use the arrow to
determine which way to scroll the Code window to view the target of
the JUMP.

� The target of a JUMP instruction is always marked with a highlighted
arrow indicator (=>) beside the destination address.

� If the instruction references a memory location, the effective address
and the value at the effective address display on the end of the code
line. If the Register window is visible, however, the effective address
and the value at the effective address display in that window beneath
the flags field.

� If a breakpoint exists at any instruction in the Code window, the
corresponding line displays in bold text.

� The lines above and below the Code window show more information
about the code.

� Information above the Code window includes one of the
following:
� Symbolname + Offset

� Source file name, if viewing source

� One of the following segment types:
V86 Code from a real-mode segment:offset address.
PROT16 Code from a 16-bit protected mode selector:offset
address
PROT32 Code from a 32-bit protected mode selector:offset
address

� Information below the Code window includes one of the
following:
� Windows module name, section name, and OFFSET if it is a

32-bit Windows module. For example,
KERNEL32!.Text + 002f

� Windows module name and segment number in parentheses
if it is a 16-bit Windows module. For example, Display (01)
Chapter 5� Navigating Through SoftICE 103

BETA REVIEW
� Owner name of the code segment if it is in V86 mode. For
example, DOS.

Entering Commands From the Code Window

You can still enter commands when the cursor is in the Code window.
After you type the first letter of a command, the cursor moves down to
the Command window. After you press Enter and the command
completes, the cursor moves back to the Code window. You can also use
function key commands while the cursor is in the Code window. Refer to
Using the Command Window on page 90 for more information about
entering commands.

The following commands are particularly useful.

Refer to the SoftICE Command Reference for more information about these
commands.

Table 5-25. Code Windows Commands

Command Function

. (Dot) View the instruction at the current EIP.

A address Assemble instructions directly into memory.

BPX (F9) Set point-and-shoot breakpoints.

FILE file-name Select the source file to view.
The filename can be a partial name. If you do not know the
name of the filename, enter FILE * to display all the files loaded
for the symbol table.

HERE (F7) Set breakpoints that execute one time.

SET Display or set user preferences.

SRC Switch among the Code window modes: source, mixed, and
code.

SS string Move the source display to the next occurrence of the
specified string.

TABS tab-
setting

Note: TABS is now part of the SET command. See the SET
command entry in the SoftICE Command Reference for details.

U address Unassemble any code address.
If you specify a function name for the address parameter,
SoftICE scrolls the Code window to the function you specify.
104 Using SoftICE

BETA REVIEW
Using the Locals Window
The Locals window displays the current stack. You can view the contents
of structures, arrays, and character strings within the stack by expanding
them.

Controlling the Locals Window

Use the following commands to control the Locals window.

Scrolling the Locals Window

To scroll the Locals window, either use the scroll arrows or use Alt-L to
move the cursor into the Locals window, then use the following keys.

Table 5-26. Locals Windows Commands

Command Action

WL Opens and closes the Locals window.

WL [num lines] Resizes the Locals window.

Alt-L Moves the cursor into or out of the Locals window.

Alt-E Invoke inline editing.

Table 5-27. Locals Window Scrolling Functions

Function Key Sequence

Scroll the Locals window to the previous page. PageUp

Scroll the Locals window to the next page. PageDn

Scroll the Locals window to the previous line. UpArrow

Scroll the Locals window to the next line. DownArrow

Jump to first item. Home

Jump to last item. End

Scroll the Locals window left one character. LeftArrow

Scroll the Locals window right one character. RightArrow
Chapter 5� Navigating Through SoftICE 105

BETA REVIEW
Expanding and Collapsing Stacks

You can expand structures, arrays, and character strings to display their
contents. These items are delineated with a plus sign (+) to indicate that
you can expand them. To expand or collapse an item, do the following:

� Pentium PCs only—Double-click the item.

� All PCs—Use Alt-L to enter the Locals window, scroll to the item, and
press Enter.

Associated Commands

The following commands are associated with the Locals window. Refer to
the SoftICE Command Reference for more information about using these
commands.

Using the Watch Window
The Watch window lets you monitor the values of expressions that you
set with the WATCH command. Refer to the SoftICE Command Reference
for more information about the WATCH command.

Controlling the Watch Window

Use the following commands to control the Watch window.

Table 5-28. Locals Window Commands

Command Function

LOCALS Lists local variables from the current stack frame.

TYPES [type-name] Lists all types in the current context or lists all type
information for the type-name specified.

Table 5-29. Watch Window Commands

Command Action

WW Opens and closes the Watch window.

WW [num lines] Resizes the Watch window.

Alt-W Moves the cursor into or out of the Watch window.

Alt-E Invoke inline editing.
106 Using SoftICE

BETA REVIEW
Scrolling the Watch Window

To scroll the Watch window, either use the scroll arrows or use Alt-W to
move the cursor into the Watch window and use the following keys.

Setting an Expression to Watch

Use the WATCH command to set an expression to watch. The expression
can use global and local symbols, registers, and addresses.

Note: To set a watch on a local variable, the variable must be in scope.

The following examples illustrate how to use the WATCH command.

� Monitors the value of ds:esi:

WATCH ds:esi

� Monitors the value ds:esi points to:

WATCH *ds:esi

Deleting a Watch

You can use either the mouse or keyboard to delete a watch. To use your
mouse to delete a watch, click on the watch and press Delete. To use your
keyboard to delete a watch, use Alt-W to enter the Watch window, use
the arrow keys to select the watch, and press Delete.

Table 5-30. Watch Window Scrolling Functions

Function Key Sequence

Scroll the Watch window to the previous page. PageUp

Scroll the Watch window to the next page. PageDown

Scroll the Watch window to the previous line. Arrow

Scroll the Watch window to the next line. DownArrow

Jump to first item. Home

Jump to last item. End

Scroll the Watch window left one character. LeftArrow

Scroll the Watch window right one character. RightArrow
Chapter 5� Navigating Through SoftICE 107

BETA REVIEW
Viewing Information

The Watch window contains the following fields in the order shown.

Expanding and Collapsing Typed Expressions

You can expand typed expressions to display their contents. Typed
expressions are delineated with a plus sign (+) to indicate that you can
expand them. To expand or collapse a typed expression, do the
following:

� Pentium PCs only — Double-click the item.

� All PCs — Use Alt-W to enter the Watch window, scroll to the item,
then press Enter.

Associated Commands

The following command is associated with the Watch window. Refer to
the SoftICE Command Reference for more information about using this
command.

Using the Register Window
The Register window displays the current value of the system registers,
flags, and the effective address if applicable. Use this window to
determine which registers are altered by a procedure call or to edit the
registers and flags.

Table 5-31. Watch Window Fields

Watch Line Field Description

Expression Actual expression that was typed on the WATCH
command. This expression is re-evaluated every time the
Watch window displays.

Type definition Type definition of the expression.

Value Current value of the expression being watched.

Table 5-32. Watch Window Command

Command Function

WATCH expression Adds a watch expression.
108 Using SoftICE

BETA REVIEW
Controlling the Register Window

Use the following commands to control the Register window.

If you are not using the Register window, close it to free up screen space
for other windows.

Viewing Information

The first three lines in the Register window show the following registers,
flags, and address if available:

EAX, EBX, ECX, EDX, ESI
EDI, EBP, ESP, EIP, o d i s z a p c
CS, DS, SS, ES, FS, GSeffective address=value

When you use the T (trace), P (step over), and G (go to) commands,
SoftICE highlights the registers that change. This feature is useful for
seeing which registers were altered by a procedure call.

In the second line of the Register window, the CPU flags are defined as
follows.

Note: A lowercase letter that is not highlighted indicates a flag value of 0. A
highlighted uppercase letter indicates a flag value of 1, for example,
o d I s Z a p c.

Table 5-33. Register Window Commands

Command Action

WR Opens and closes the Register window.

Alt-R Moves the cursor into or out of the Register window.

Table 5-34. Register Window CPU Flag Definitions

Flag Description Flag Description

o Overflow flag z Zero flag

d Direction flag a Auxiliary carry flag

i Interrupt flag p Parity flag

s Sign flag c Carry flag
Chapter 5� Navigating Through SoftICE 109

BETA REVIEW
If the current instruction references a memory location, the effective
address and the value at the effective address display in the third line of
the Register window. You can use the effective address and value in
expressions with the Eaddr and Evalue functions; refer to Built-in Functions
on page 164.

Editing Registers and Flags

You can use the Register window to edit the registers and flags. Move the
cursor into the Register window, then edit the registers and flags in place.
To move the mouse into the Register window, either click the mouse in
the Register window or press Alt-R. The following keys are available for
editing within the Register window. You can also toggle the flags register
by clicking on the appropriate flag.

Associated Commands

Table 5-36 provides commands associated with the Register window.
Refer to the SoftICE Command Reference for more information about using
these commands.

Table 5-35. Register Window Editing Functions

Editing Function Active Keys

Position cursor at the beginning of the next register field. Tab or
Shift-RightArrow

Position cursor at the beginning of the previous register field. Shift-Tab or
Shift-LeftArrow

Accept changes and exit edit register mode. Enter

Exit edit register mode. The register that the cursor is
currently on will not change, but other previously-modified
registers change.

Esc

Toggle the value of a flag when the cursor is positioned in
the flags field.

Insert or Mouse
Click

Move the cursor left, right, up, and down in the Register
window.

Arrow keys
110 Using SoftICE

BETA REVIEW
Using the Data Window
The Data window lets you view and edit the contents of memory. You
can use up to four different Data windows at any given time. Each Data
window can view different memory locations and display information in
its own unique format, as well as display an address that is independent
of the other Data windows.

Controlling the Data Window

Use the following commands to control the Data window.

Table 5-36. Associated Register Window Commands

Command Function

CPU Displays CPU register information.

G [=start-address] [break-
address]

Goes to an address.

P Executes one program step.

T [=start-address] [count] Traces one instruction.

Table 5-37. Data Window Commands

Command Action

WD.n Opens and closes the Data window, where n is a number from
0 through 3 specifying the Data window. If you do not specify
a value for n, 0 is assumed.

WD.n [#-lines] Resizes the Data window, or open the specified Data window
to the specified size.

Alt-D Moves the cursor into or out of the current Data window.

DATA n Opens the next sequential Data window, or switches to the
next sequential Data window once all four are open.
Specifying a value for n will set the specified window as the
active Data window.

D [address] Select an address to view in the current Data window.

FORMAT
(Shift-F3)

Selects a format to display in the current Data window.
Chapter 5� Navigating Through SoftICE 111

BETA REVIEW
There can only be one active Data window at a time. SoftICE signifies the
active window by displaying the Data window number, on the right edge
of the title bar, in bold type. To make a specific Data window the active
window, either select it with the mouse, or use the DATA n command.

Scrolling the Data Window

To scroll the Data window, either click the scroll arrows or press Alt-D to
move the cursor into the Data window and use the following keys.

Viewing Information

The line above the Data window displays the following four fields in the
order shown.

Table 5-38. Data Window Scroll Functions

Function Key Sequence

Scroll the window to the previous page. PageUp

Scroll the window to the next page. PageDown

Scroll the window to the previous line. UpArrow

Scroll the window to the next line. DownArrow

Table 5-39. Data Window Description Fields

Field Description

A String If the window was assigned an expression with the DEX
command, the ASCII expression displays on this line.
Otherwise, the nearest symbol preceding the data location
displays. This can be one of the following strings:

• Symbol name followed by the hexadecimal offset from the
symbol name, for example, MySYMBOL+00010

• Windows module name followed by a type, if the data
segment is part of the Windows heap, for example,
mouse.moduleDB

• Owner name of the data segment if it is part of a virtual
DOS machine.

• Windows module name, section name, and hexadecimal
offset from the name, for example, KERNEL32!.text+001F

If the location does not have an associated symbol, this field
is blank.

Data format type Displays either byte, word, dword, short real, long real, or
10-byte real.
112 Using SoftICE

BETA REVIEW
Each line in a Data window shows 16 bytes of data in the current format
of either byte, word, dword, short real, long real, or 10-byte real. If the
current format is 10-byte real, each line shows 20 bytes of data. The data
bytes also display in ASCII on the right side of the window if the current
format is hexadecimal (byte, word, or dword).

Changing the Memory Address and Format
Tip You can also use
the D command to
specify the format for
the address you
display. Refer to the
SoftICE Command
Reference for more
information about the
D command.

Either click on the format name listed in the top line of the Data window
or use the FORMAT command (Shift-F3) to change the format of the
current Data window. The format cycles among the following: byte,
word, dword, short real, long real, and 10-byte real.

To change the memory address displayed in the current Data window,
enter the D command and specify an address. The following example
displays the memory starting at address ES:1000h:

: D es:1000

Editing Memory

To edit memory, move the cursor into the Data window and use either
hexadecimal or ASCII characters.

Tip You can also use
the E command to edit
data.

Use the following keys for editing within the Data window.

Segment type Either V86 or PROT displays. V86 indicates data from a real-
mode segment:offset address and PROT indicates data from
a protected-mode selector:offset address.

Window number Data window number from 0 to 3.

Table 5-39. Data Window Description Fields (Continued)

Field Description

Table 5-40. Data Window Editing Functions

Editing Function Active Keys

Toggle between numeric and ASCII areas. Tab

Position cursor at the beginning of the previous data field
(previous byte, word, or dword in hexadecimal mode, or
previous character in ASCII mode).

Shift-Tab

Accept changes and exit edit data mode. Enter

Exit edit data mode. The data field the cursor is currently on
will not change, but other previously-modified data fields
change.

Esc
Chapter 5� Navigating Through SoftICE 113

BETA REVIEW
Assigning Expressions

Use the DEX command to assign an expression to any of the Data
windows. When SoftICE pops up, the expressions are evaluated and the
resulting locations display in their assigned Data windows. This is useful
for setting up a window that always displays the contents of the stack.
For example, the following command displays the current contents of
the stack in Data window 0, each time SoftICE pops up:

DEX 0 SS:ESP

Associated Commands

The following commands are associated with the Data window. Refer to
the SoftICE Command Reference for more information about using these
commands.

Using the Stack Window
The Stack Window displays the call stacks for 32-bit code. The Stack
window has three columns: Frame pointer, return address, and
instruction pointer (EIP):

0012FFC0 77F1B304 WINMAIN
0012FFF0 00000000 KERNEL32!GetProcessPriorityBoost+0117

Use the following commands to control the Stack window.

Table 5-41. Associated Data Window Commands

Command Function

D [size] [address] Displays memory.

DEX [data-window-number
[expression]]

Displays or assigns an expression to the
Data window.

E [size] [address [data-list]] Edits memory.

S [-cu] [address L length data list] Searches memory for data.
114 Using SoftICE

BETA REVIEW
You can also click the mouse in the Stack window to set focus, single
click an item to select it, and double click an item to update the Locals,
Code, and Thread windows.

Using the Thread Window
The Thread Window displays information for threads within a given
process. The data displayed in the Thread window depends on whether
you are running Windows 9x or the Windows NT family. Refer to the
SoftICE online help for details (the information can be found under the
WT command).

Controlling the Thread Window

Use the following commands to control the Thread window:

To scroll the Thread window, either click the scroll arrows or press Alt-T
to move the cursor into the Thread window and use the following keys

Table 5-42. Stack Window Commands

Command/Keys Function

WS Opens and closes the Stack window

ALT-S Gives Stack window focus

Arrow Keys Select a particular call stack element

Enter Updates Locals and Code windows when a call stack item is
selected

Table 5-43. Thread Window Commands

Command Action

WT Opens and closes the Thread Window

WT [num lines] Resizes the Thread Window

Alt-T Moves the cursor into or out of the thread window
Chapter 5� Navigating Through SoftICE 115

BETA REVIEW
Using the Pentium III/IV Register Window
The Intel Pentium III/IV instruction set is supported, including
disassembly and assembly of new opcodes. Pentium III/IV registers can
be viewed using the WX command.

Using the FPU Stack Window
The FPU Stack window displays the current state of the floating point
unit (FPU) stack and MMX/MMX2 registers.

Use the WF command to open or close the FPU Stack window.

Table 5-44. Thread Window Scrolling Key Sequences

Function Key Sequence

Scroll the window to the previous page. PageUp

Scroll the window to the next page. PageDown

Scroll the window to the previous line. UpArrow

Scroll the window to the next line. DownArrow

Table 5-45. Pentium III/IV Register Commands

CPU Command Function

P-III f Display as short real values

P-III d Display as dword values

P-III * Toggle between dword and real

P-IV+ -dq Double quad-word

P-IV+ -sf Single float

P-IV+ -df Double float

P-IV+ -q Quad word
116 Using SoftICE

BETA REVIEW
Viewing Information

If the values of the FPU registers display as a question mark (?), the FPU is
disabled or not present. The Windows NT family enables the FPU for a
thread after it executes one FPU-related instruction.

The Intel architecture aliases the 64-bit MMX/MMX2 registers upon the
FPU stack.

Note: MMX refers to the multimedia extensions to the Intel Pentium and
Pentium-Pro processors.

To display registers in the FPU Stack window, select one of the data
formats listed in Table 5-46 on page 117.

Tip Use the WF -D
command to display
the contents of the
registers, the status,
and the control words
in the Command
window.

When they are viewed as floating points, the registers are labeled ST0
through ST7. When they are viewed packed, as byte/word/dword, the
registers are labelled MM0 through MM7. (See the SoftICE Command
Reference for more information about the WF command.)

Table 5-46. FPU Stack Window Register Data Formats

Data Format Description Use

WF F Floating point Floating point only

WF B Byte packed

MMX only
WF W Word packed

WF D Dword packed
Chapter 5� Navigating Through SoftICE 117

BETA REVIEW
118 Using SoftICE

BETA REVIEW
Chapter 6

Using SoftICE
� Debugging Multiple Programs at Once

� Trapping Faults

� About Address Contexts

� Using INT 0x41 .DOT Commands

� Understanding Transitions From Ring 3 to Ring 0

Debugging Multiple Programs at Once
Symbol Loader lets you load several symbol tables at the same time.
Thus, you can debug complex sets of system software that may contain
several different components, including applications, DLLS, and drivers.

Use the TABLE command to view a list of all the symbol tables currently
loaded and to select a different symbol table. When you reach a
breakpoint in a program that has a corresponding symbol table, enter the
TABLE command followed by the first few characters of the symbol table
name to change the current symbol table to the one that matches your
program.

If you are not sure which table is the current table, enter the TABLE
command with no parameters to list all the loaded tables. The current
table is highlighted.

You can also switch tables to a symbol table that does not match the code
you are currently executing. This is useful for setting a breakpoint in a
program other than the one you are currently executing.

Note: Symbol tables now do time and date checking to ensure that the
symbol files are up to date with the binary in use. Correct any
discrepancies by retranslating and reloading the symbol table.
 119

BETA REVIEW
Trapping Faults
SoftICE provides fault trapping support for the following types of code:

� Ring 0 driver code (kernel mode device drivers)
� Ring 3 (32-bit) protected mode (Win32 programs)
� Ring 3 (16-bit) protected mode (16-bit Windows programs)

SoftICE does not provide fault trapping for DOS machines. This includes
both straight V86 programs and DOS extender applications.

The following sections describe fault trapping support.

Ring 0 Driver Code (Kernel Mode Device Drivers)

SoftICE handles all ring 0 exceptions that result in a call to
KeBugCheckEX. KeBugCheckEX is the routine that displays the “blue
screen” in the Windows NT family.

If the KeBugCheckEX bug code is the result of a page fault, GP fault, stack
fault, or invalid opcode, SoftICE attempts to restart the faulting
instruction. Control stops on the actual faulting instruction with all the
registers in their original state. If the code continues to fault on the same
instruction, either reboot or attempt to skip the fault by altering the EIP
or fixing the fault condition.

If the KeBugCheckEx bug code is not the result of a page fault, GP fault,
stack fault, or invalid opcode, the instruction cannot be restarted.
SoftICE pops up and displays the first instruction in KeBugCheckEX and
a message similar to the following:

Break Due to KeBugCheckEx (Unhandled kernel mode exception)
Error=1E (KMODE_EXCEPTION_NOT_HANDLED) P1=8000003 P2=804042B1
P3=0 P4=FFFFFFFF

The error field is the hexadecimal bug code followed by a description of
the error. Bug code definitions are contained in the Windows NT family
DDK in the include file bugcodes.h.

The P1 through P4 fields are the parameters passed to the KeBugCheckEX
routine. These fields do not have a standard defined meaning.

If you attempt to continue from this point, the Windows NT family
platforms display a blue screen and hang. If you want to gain control
after the blue screen, turn on I3HERE (SET I3HERE ON); a Windows NT
family machine will execute an INT 3 instruction after it displays the
blue screen.
120 Using SoftICE

BETA REVIEW
Ring 3 (32-bit) Protected Mode (Win32 Programs)

SoftICE traps all unhandled exceptions that normally cause an error
dialog box. SoftICE automatically restarts the instruction that caused the
fault, pops up the SoftICE window, and displays the instruction and a
message similar to the following:

Break due to Unhandled Exception
NTSTATUS=STATUS_ACCESS_VIOLATION

The NTSTATUS field contains the appropriate error message
corresponding to the status code. (Refer to the include file NTSTATUS.H
in the Windows 2000/XP DDK for a complete list of status codes.)

If execution continues after SoftICE traps the fault, SoftICE ignores the
fault and lets the system do its normal exception processing. For
example, it could present an application failure dialog box.

Ring 3 (16-bit) Protected Mode (16-bit Windows Programs)

SoftICE handles 16-bit fault trapping somewhat differently than 32-bit
fault trapping. When a 16-bit fault occurs, the machine eventually
displays a dialog box that describes the fault and gives you the choice of
CANCEL or CLOSE.

If you click CANCEL, the faulting instruction is restarted and Windows
issues a debugger notification for trapping the faulting instruction.
SoftICE uses this debugger hook to pop up and display the faulting
instruction. In other words, SoftICE pops up after you receive the crash
dialog box and select CANCEL, not before.

If you click CLOSE, Windows does not restart the instruction and SoftICE
does not pop up. Thus, if you want to debug the fault, make sure you
click CANCEL.

Some Windows faults display more than one dialog box. If this happens,
the first dialog box provides a choice of CLOSE or IGNORE. Choose
IGNORE to instruct Windows to skip the faulting instruction and to
continue to execute the program. Choose CLOSE to instruct Windows to
display the second dialog box, as previously described.
 Chapter 6� Using SoftICE 121

BETA REVIEW
SoftICE Crash Dump Utility

SoftICE ships with a crash dump utility that will allow you to:

� View the SoftICE history at the point in time the crash occurred

� View and merge the following SoftICE information back into SoftICE
� Breakpoints
� Named Memory
� Macros

� View a brief description of the crash code and its parameters as well
as a short description of what the bug code is

� View a list of details on the machine that crashed such as OS Build,
Service Pack, and Number of Processors

� Email the entire SoftICE state, including history, in a single file for
remote analysis

The design of SoftICE and its interaction with the operating system does
not allow for safe access to the file system at the point in time when a
blue screen crash occurs. This can be an annoyance, as there is no easy
way to rebuild the state of SoftICE at the time of the crash. We now
provide a utility that will allow post mortem analysis locally or remotely.

To run the utility, select SoftICE Crash Dump Utility from the
Compuware\DriverStudio\Debug menu or run the executable from:

\program files\compuware\driverstudio\softice\sicrashutil.exe.
122 Using SoftICE

BETA REVIEW
Figure 6-3. Crash Dump Utility Main Screen

You will be presented with the general information screen. The
information on this screen is not meant to be a full featured debugger,
but is meant to give you an overview of why the crash occurred. For full
featured debugging of a crash dump file we suggest using the
DriverWorkbench application that ships in the DriverStudio kit.

The fault description field displays a brief overview of the definition of
the crash code, as well as a brief description of the parameter description
for that particular crash.

Viewing and Merging SoftICE Information

The SoftICE information that is within the crash dump is viewable from
the SoftICE Information tab. This information can be saved to a file,
merged back into SoftICE, or emailed to a remote recipient for analysis.
In addition, statistics are given for your breakpoints.
 Chapter 6� Using SoftICE 123

BETA REVIEW
Figure 6-4. History Window

Merging data back into the appropriate SoftICE configuration files can be
done either on an individual basis, or with all of the items that can be
merged. For example, you may choose to merge back in only the Named
Memory. To do this, select the Named Memory property and then click
the Merge button. Note that the Merge button is only available when an
item can be merged back into SoftICE.

The breakpoint page is extremely helpful to see what code has, and has
not, been hit post mortem. With well placed breakpoints and the BPLOG
modifier, it is possible to effectively add debug prints without the need
for modifying your code. Within SoftICE you always have access to
breakpoint statistics. With the crash dump utility you have access to that
same information. You can view the number of times the breakpoint was
hit, the number of times the conditional expression evaluated to true or
false, as well as the condition in use.
124 Using SoftICE

BETA REVIEW
Figure 6-5. Breakpoint Page

Accessing merged data

If SoftICE is already running when the merge is run, you will need to
reboot your machine, as the configuration information is read only upon
startup of SoftICE. If SoftICE is not running when the Merge or Merge All
option was selected, this information will be available after starting
SoftICE. Named memory and macros will be automatically instantiated
and can be viewed with the NAME and MACRO commands.

The breakpoints will need to be reinstantiated. To do this:

1 Pop into SoftICE and issue the BH command.

2 Use the cursor keys to move to the breakpoints you want to reenable.

3 Use the <Insert> key to enable each selected breakpoint.
 Chapter 6� Using SoftICE 125

BETA REVIEW
Saving and emailing crash dump information

All information can be saved to disk for further review, or emailed to a
recipient, by clicking on the appropriate tabs. As the size of the email
attachment can be quite large (this varies with the size of your history
buffer) it is suggested that you save the file to disk, use some sort of file
compression utility, and then email the compressed file.

About Address Contexts
Windows 9x and the Windows NT family machines give each process its
own address space from 0 GB to 2GB. In addition, Windows ME reserves
the first 4 MB for each virtual machine (where DOS and its drivers
reside). Memory from 2GB to 4GB is shared between all processes.

The process-specific virtual address space is known as the _address
context_ (or _process_). SoftICE displays the name of the current process
on the far right side of the status bar at the bottom of the screen. Be
aware that the current context is not always your application’s context,
particularly if you hotkey into SoftICE. If you are not in the context of
your application, use the ADDR command to switch to your application
before examining or modifying your application’s data or setting
breakpoints in your application’s code.

SoftICE automatically switches address contexts for your convenience
under the following circumstances:

� If you use the TABLE command to switch to a 32-bit table, SoftICE
automatically sets the current address context to the address context
for that module.

� If you use the FILE command to display a source file from a 32-bit
table, SoftICE sets the current address context to the address context
for that module.

� If you use a symbol name in an expression, SoftICE changes the
address context to the appropriate context. This includes export
symbols loaded through Symbol Loader.
126 Using SoftICE

BETA REVIEW
When you change address contexts, confusion might arise if you are
viewing code or data located in the application’s private address space (a
linear address between 0x400000 to 0x7FFFFFFF for Windows 9x, and 0
to 0x7FFFFFFF for the Windows NT family). This occurs because the data
or code that is displayed changes even though the selector:offset address
do not. This is normal. The linear addresses remain the same, but the
underlying system page tables now reflect the physical memory for the
specified address context.

SoftICE does not allow you to specify an address context as part of an
expression. If you are using bare addresses in an expression, be sure that
the current address context is set appropriately. For example, D
137:401000 displays memory at 401000 in the current address context.

Caution: Before you use bare addresses to set breakpoints, be sure you
are in the correct address context. SoftICE uses the current context to
translate addresses.

Using INT 0x41 .DOT Commands
Under Windows 9x, Microsoft provides a set of extensions that allow a
VxD or 32-bit DLL to communicate with a kernel-level debugger. (See the
DEBUGSYS.INC file distributed with the Windows 9x DDK.) The .DOT
API allows a VxD to provide VxD-specific debug information or
command extensions interactively through the standard user interface of
the kernel-level debugger. Although the API was originally designed for
Microsoft’s WDEB386, SoftICE supports a rich subset of the .DOT API.
Thus, you can use SoftICE to access VMM and VxD .DOT commands, as
well as any .DOT commands you might implement for your own VxD.

Caution: The debug functionality for all .DOT extensions is built into
VMM or another VxD. It is not part of SoftICE. SoftICE cannot guarantee
that these extensions work correctly. Also, .DOT extensions might not
perform error checking, which can lead to a system crash if invalid input
is entered. Finally, SoftICE cannot determine whether or not a .DOT
extension requires the system to be in a specific state. Using the .DOT
extension at an inappropriate time might result in a system crash.

SoftICE supports the following .DOT commands in Windows 9x:

� Registered .DOT extensions

To get a list of registered dot commands, use the following command:

� .?
 Chapter 6� Using SoftICE 127

BETA REVIEW
� Debug_Query .DOT extensions

To invoke these .DOT handlers, type the VxD name after the dot.
Most of these commands, if implemented, display menus. For
example, the following VxDs have .DOT handlers in both the retail
and debug versions of Windows 9x:

� .VMM
� .VPICD
� .VXDLDR

To determine if a VxD has a .DOT handler, try it. The .DOT handlers
in the debug version of the DDK sometimes provide more functional-
ity than the .DOT handlers in the retail version.

� VMM-embedded .DOT extensions

VMM provides a variety of .DOT extensions that are available in both
the debug and retail versions. To get a list of .DOT extensions
supported by VMM, use the following command:

..?

In the Windows 9x retail build, the ..? command yields the .DOT
extensions shown in Table 6-1 on page 128.

Table 6-1. Win9x .DOT Extensions

.DOT Extension Description

.R[#] Displays the registers of the current thread.

.VM[#] Displays the complete VM status.

.VC[#] Displays the current VMs control block.

.VH[#] Displays a VMM linked list, given list handle.

.VR[#] Displays the registers of the current VM.

.VS[#] Displays the current VMs virtual mode stack.

.VL Displays a list of all VM handles.

.DS Dumps protected mode stack with labels.

.VMM Menu VMM state information.

.<dev-name> Display device-specific information.
128 Using SoftICE

BETA REVIEW
Understanding Transitions From Ring 3 to Ring 0
Many times when tracing into code using Windows 9x, you arrive at
either an INT 0x30 or an ARPL. Both are methods for making a transition
from Ring-3 to Ring-0. When you wish to follow the ring transition, you
can save yourself the time and effort of stepping through a large amount
of VMM code by using the G(o) command to execute up to the address
shown in the disassembly.

Windows 9x uses the following methods to transition Ring-3 code to
Ring-0 code:

� For V86 code, Windows 9x uses the ARPL instruction, which causes
an invalid opcode fault. The invalid opcode handler then passes con-
trol to the appropriate VxD. The ARPL instruction is usually in ROM.
Windows 9x uses only one ARPL and it varies the V86 segment:offset
to indicate different VxD addresses. For example, if the ARPL is at
FFFF:0, Windows 9x uses the addresses FFFF:0, FFFE:10, FFFD:20,
FFFC:30 and so on.

The following example shows sample output for disassembling an
ARPL:

� For PM code, Windows 9x uses interrupt 0x30h. Segment 0x3B con-
tains nothing but interrupt 0x30 instructions, each of which transfers
control to a VxD.

The following example shows sample output for disassembling
segment:offset 3B:31A:

FDD2:220D ARPL DI,BP ; #0028:C0078CC9 IFSMgr(01)+0511

003B:031A INT30 ; #0028:C008D4F4 VPICD(01)+0A98

003B:031C INT30 ; #0028:C007F120 IOS(01)+0648

003B:031E INT30 ; #0028:C02C37FC VMOUSE(03))00F0

003B:0320 INT30 ; #0028:C02C37FC VMOUSE(03))00F0

003B:0322 INT30 ; #0028:C023B022 BIOSXLAT(05)=0022

003B:0324 INT30 ; #0028:C230F98 BIOSXLAT(04)=0008

003B:0326 INT30 ; #0028:C023127C BIOSXLAT(04)=02EC
 Chapter 6� Using SoftICE 129

BETA REVIEW
130 Using SoftICE

BETA REVIEW
Chapter 7

Using Breakpoints
� Introduction

� Types of Breakpoints Supported by SoftICE

� Virtual Breakpoints

� Setting a Breakpoint Action

� Conditional Breakpoints

� Elapsed Time

� Breakpoint Statistics

� Referring to Breakpoints in Expressions

� Manipulating Breakpoints

� Using Embedded Breakpoints

Introduction
You can use SoftICE to set breakpoints on program execution, memory
location or I/O port reads and writes, interrupts, and module loads and
unloads. SoftICE assigns a breakpoint index, starting from 0, to each
breakpoint. You can use this breakpoint index to identify breakpoints
when you set, delete, disable, enable, or edit them.

All SoftICE breakpoints are sticky, which means that SoftICE tracks and
maintains a breakpoint until you intentionally clear or disable it using
the BC or the BD command. After you clear breakpoints, you can recall
them with the BH command, which displays a breakpoint history.

By default, the maximum number of breakpoints you can set at one time
in SoftICE is limited to 32. The limit can be changed using the SoftICE
configuration utility, or by placing an entry in WINICE.DAT,
BREAKPOINTS=xx. Once SoftICE is started there is no way to increase the
number of available breakpoints on the fly.
 131

BETA REVIEW
Note: The maximum number of memory location (BPMs) and I/O break-
points (BPIOs) is a total of four, due to the number of available
debug registers on x86 processors.

Where symbol information is available, you can set breakpoints using
function names. When in source or mixed mode, you can set point-and-
shoot style breakpoints on any source code line. A valuable feature is that
you can set point-and-shoot breakpoints in a module before it is loaded.

Types of Breakpoints Supported by SoftICE
SoftICE provides a powerful array of breakpoint capabilities that take full
advantage of the x86 architecture, as follows:

� Execution Breakpoints: SoftICE replaces an existing instruction
with INT 3. You can use the BPX command to set execution
breakpoints.

� Memory Breakpoints: SoftICE uses the x86 debug registers to break
when a certain byte/word/dword of memory is read, written, or
executed. You can use the BPM command to set memory
breakpoints.

� Interrupt Breakpoints: SoftICE intercepts interrupts by modifying
the IDT (Interrupt Descriptor Table) vectors. You can use the BPINT
command to set interrupt breakpoints.

� I/O Breakpoints: SoftICE uses a debug register extension available on
Pentium and Pentium-Pro CPUs to watch for an IN or OUT
instruction going to a particular port address. You can use the BPIO
command to set I/O breakpoints.

� Window Message Breakpoints: SoftICE traps when a particular
message or range of messages arrives at a window. This is not a
fundamental breakpoint type; it is just a convenient feature built on
top of the other breakpoint primitives. You can use the BMSG
command to set window message breakpoints.

� Module Load/Unload Breakpoints: SoftICE traps when it detects
that a given module (specified by name) is loading or unloading from
memory.
132 Using SoftICE

BETA REVIEW
Breakpoint Options

SoftICE can accept command modifiers to limit the scope of a breakpoint
for all breakpoint commands, including bpx, bpm, bpio, and bpint.
Depending on the OS, the modifiers differ.

� Windows 9x allows modifiers of .t, .p, .a, and .v

� Windows NT family allow modifiers of .t and .p

If the currently executing process ID (PID) is 0x200 and you issue a
bpint.p 2e within SoftICE, future int 2e breakpoints will get hit only if the
executing process is 0x200. By contrast, issuing a command of bpint 2e
will cause every single int 2e to pop-up SoftICE.

You can qualify each type of breakpoint with the following two options:

� A conditional expression [IF expression]: The expression must
evaluate to non-zero (TRUE) for the breakpoint to trigger. Refer to
Conditional Breakpoints on page 141.

� A breakpoint action [DO “command1;command2;…”]: A series of SoftICE
commands can automatically execute when the breakpoint triggers.
You can use this feature in concert with user-defined macros to
automate tasks that would otherwise be tedious. Refer to Setting a
Breakpoint Action on page 140.

Note: For complete information on each breakpoint command, refer to the
SoftICE Command Reference.

Table 7-1. SoftICE Command Modifiers

Command Modifier Description

.t Conditionally set the breakpoint to trigger in the
active thread.

.p Conditionally set the breakpoint to trigger in the active
Process ID.

.a Conditionally set the breakpoint to trigger in the active
address context.

.v Conditionally set the breakpoint to trigger in the active
VMM ID.
 Chapter 7� Using Breakpoints 133

BETA REVIEW
Execution Breakpoints

An execution breakpoint traps executing code such as a function call or
language statement. This is the most frequently used type of breakpoint.
By replacing an existing instruction with an INT 3 instruction, SoftICE
takes control when execution reaches the INT 3 breakpoint.

SoftICE provides two ways for setting execution breakpoints: using a
mouse and using the BPX command. The following sections describe
how to use these methods for setting breakpoints.

Using a Mouse to Set Breakpoints

If you are using a Pentium processor and a mouse, you can use the mouse
to set or clear point-and-shoot (sticky) and one-shot breakpoints. To set a
sticky breakpoint, double-click the line on which you want to set the
breakpoint. SoftICE highlights the line to indicate that you set a
breakpoint. Double-click the line again to clear the breakpoint. To set a
one-shot breakpoint, click the line on which you want to set the
breakpoint and use the HERE command (F7) to execute to that line.

Using the BPX Command to Set Breakpoints

Use the BPX command with any of the following parameters to set an
execution breakpoint:

BPX [address] [IF expression] [DO “command1;command2;…”]

To set a breakpoint on your application’s WinMain function, use this
command:

BPX WinMain

Use the BPX command without specifying any parameter to set a point-
and-shoot execution breakpoint in the source code. Use Alt-C to move
the cursor into the Code window. Then use the arrow keys to position
the cursor on the line on which you want to set the breakpoint. Finally,
use the BPX command (F9). If you prefer to use your mouse to set the
breakpoint, click the scroll arrows to scroll the Code window, then
double-click the line on which you want to set the breakpoint.

IF expression Refer to Conditional Breakpoints on page 141.

DO “command1;command2;…” Refer to Setting a Breakpoint Action on page 140.
134 Using SoftICE

BETA REVIEW
Memory Breakpoints

A memory breakpoint uses the debug registers found on the 386 CPUs
and later models to monitor access to a certain memory location. This
type of breakpoint is extremely useful for finding out when and where a
program variable is modified, and for setting an execution breakpoint in
read-only memory. You can only set four memory breakpoints at one
time, because the CPU contains only four debug registers.

Use the BPM command to set memory breakpoints:

BPM[B|W|D] address [R|W|RW|X] [debug register] [IF expression]
[DO “command1;command2;…”]

The following example sets a memory breakpoint to trigger when a value
of 5 is written to the Dword (4-byte) variable MyGlobalVariable.

BPMD MyGlobalVariable W IF MyGlobalVariable==5

If the target location of a BPM breakpoint is frequently accessed,
performance can be degraded regardless of whether the conditional
expression evaluates to FALSE.

Interrupt Breakpoints

Use an interrupt breakpoint to trap an interrupt through the IDT. The
breakpoint only triggers when a specified interrupt is dispatched through
the IDT.

BPM and BPMB Set a byte-size breakpoint.

BPMW Sets a word (2-byte) size breakpoint.

BPMD Sets a dword (4-byte) size breakpoint.

R, W, and RW Break on reads, writes, or both.

X Breaks on execution; this is more powerful than a
BPX-style breakpoint because memory does not
need to be modified, enabling such options as
setting breakpoints in ROM or setting breakpoints on
addresses that are not present.

debug register Specifies which debug register to use. SoftICE
normally manages the debug register for you, unless
you need to specify it in an unusual situation.

IF expression Refer to Conditional Breakpoints on page 141.

DO
“command1;command2;
…”

Refer to Setting a Breakpoint Action on page 140.
 Chapter 7� Using Breakpoints 135

BETA REVIEW
Use the BPINT command to set interrupt breakpoints:

BPINT interrupt-number [IF expression] [DO
“command1;command2;…”]

If an interrupt is caused by a software INT instruction, the instruction
displayed will be the INT instruction. (SoftICE pops up when execution
reaches the INT instruction responsible for the breakpoint, but before the
instruction actually executes.) Otherwise, the current instruction will be
the first instruction of an interrupt handler. You can list all interrupts and
their handlers by using the IDT command.

Use the following command to set a breakpoint to trigger when a call to
the kernel-mode routine NtCreateProcess is made from user mode:

BPINT 2E IF EAX==1E

Note: The NtCreateProcess is normally called from ZwCreateProcess in the
NTDLL.DLL, which is in turn called from CreateProcessW in the
KERNEL32.DLL. In the conditional expression, 1E is the service
number for NtCreateProcess. Use the NTCALL command to find this
value.

You can use the BPINT command to trap software interrupts, for example
INT 21, made by 16-bit Windows programs. Note that software interrupts
issued from V86 mode do not pass through the IDT vector that they
specify. INT instructions executed in V86 generate processor general
protection faults (GPF), which are handled by vector 0xD in the IDT. The
Windows GPF handler realizes the cause of the fault and passes control to
a handler dedicated to specific V86 interrupt types. The types may end
up reflecting the interrupt down to V86 mode by calling the interrupt
handler entered in the V86 mode Interrupt Vector Table (IVT). In some
cases, a real-mode interrupt is reflected (simulated) by calling the real-
mode interrupt vector.

In the case where the interrupt is reflected, you can trap it by placing a
BPX breakpoint at the beginning of the real-mode interrupt handler.

To set a breakpoint on the real-mode INT 21 handler, use the following
command:

BPX *($0:(21*4))

interrupt-number Number ranging from 0 to 255 (0 to FF hex).

IF expression See Conditional Breakpoints on page 141.

DO “command1;command2;…” See Setting a Breakpoint Action on page 140.
136 Using SoftICE

BETA REVIEW
I/O Breakpoints

An I/O breakpoint monitors reads and writes to a port address. The
breakpoint traps when an IN or OUT instruction accesses the port.
SoftICE implements I/O breakpoints by using the debug register
extensions introduced with the Pentium. As a result, I/O breakpoints
require a Pentium or Pentium-Pro CPU. A maximum of four I/O
breakpoints can be set at one time. The I/O breakpoint is effective in
kernel-level (ring 0) code as well as user (ring 3) code.

Notes:
With Windows 9x, SoftICE relies on the I/O permission bitmap, which
restricts I/O trapping to ring 3 code.

You cannot use I/O breakpoints to trap IN/OUT instructions executed
by MS-DOS programs. The IN/OUT instructions are trapped and
emulated by the operating system, and therefore do not generate
real port I/O, at least not in a 1:1 mapping.

Use the BPIO command to set I/O breakpoints:

BPIO port-number [R|W|RW] [IF expression]
[DO “command1;command2;…”]

When an I/O breakpoint triggers and SoftICE pops up, the current
instruction is the instruction following the IN or OUT that caused the
breakpoint to trigger. Unlike BPM breakpoints, there is no size
specification; any access to the port-number, whether byte, word, or
dword, triggers the breakpoint. Any I/O that spans the I/O breakpoint
will also trigger the breakpoint. For example, if you set an I/O breakpoint
on port 2FF, a word I/O to port 2FE would trigger the breakpoint.

Use the following command to set a breakpoint to trigger when a value is
read from port 3FEH with the upper 2 bits set:

BPIO 3FE R IF (AL & C0)==C0

The condition is evaluated after the instruction completes. The value will
be in AL, AX, or EAX because all port I/O, except for the string I/O
instructions (which are rarely used), use the EAX register.

R, W, and RW Break on reads (IN instructions), writes (OUT
instructions), or both, respectively.

IF expression See Conditional Breakpoints on page 141.

DO “command1;command2;…” See Setting a Breakpoint Action on page 140.
 Chapter 7� Using Breakpoints 137

BETA REVIEW
Window Message Breakpoints

Use a window message breakpoint to trap a certain message or range of
messages delivered to a window procedure. Although you could
implement an equivalent breakpoint yourself using BPX with a
conditional expression, the following BMSG command is easier to use:

BMSG window-handle [L] [begin-message [end-message]]
[IF expression] [DO “command1;command2;…”

]

When specifying a message or a message range, you can use the symbolic
name, for example, WM_NCPAINT. Use the WMSG command to get a list
of the window messages that SoftICE understands. If no message or
message range is specified, any message will trigger the breakpoint.

To set a window message breakpoint for the window handle 1001E, use
the following command:

BMSG 1001E WM_NCPAINT

SoftICE is smart enough to take into account the address context of the
process that owns the window, so it does not matter what address
context you are in when you use BMSG.

window-handle Value returned when the window was created;
you can use the HWND command to get a list
of windows with their handles.

L Signifies that the window message should be
printed to the Command window without
popping into SoftICE.

begin-message Single Windows message or the lower
message number in a range of Windows
messages. If you do not specify a range with
an end-message, then only the begin-message
will cause a break.

For both begin-message and end-message,
the message numbers can be specified either
in hexadecimal or by using the actual ASCII
names of the messages, for example,
WM_QUIT.

end-message Higher message number in a range of
Windows messages.

IF expression See Conditional Breakpoints on page 141.

DO “command1;command2;…” See Setting a Breakpoint Action on page 140.
138 Using SoftICE

BETA REVIEW
You can construct an equivalent BPX-style breakpoint using a
conditional expression. Use the HWND command to get the address of
the window procedure, then use the following BPX command (Win32
only):

BPX 5FEBDD12 IF (esp->8)==WM_NCPAINT

Caution: When setting a breakpoint using a raw address (not a symbol),
it is vital to be in the correct address context.

Module Load/Unload Breakpoints

A module load breakpoint will cause SoftICE to pop up whenever it
detects that a named module is about to load or unload. This command
can be used with any module type: applications, DLLs, or drivers.

BPLOAD mod-name [L|U|B] [IF expression] [DO
“command1;command2;”]

When SoftICE pops up on a module load or unload, it does so in the
midst of the kernel code that is loading or unloading the module. It is
therefore possible to use module load breakpoints to watch the process
being created by the kernel.

Understanding Breakpoint Contexts
A breakpoint context consists of the address context in which the
breakpoint was set and in what code module the breakpoint is in, if any.
Breakpoint contexts apply to the BPX and BPM commands, and
breakpoint types based on those commands such as BMSG.

mod-name The name of the module to watch for. This should be an
exact match.

L|U|B Load, Unload, or Both. This parameter determines when
SoftICE will pop up. The default value if none is specified
is Load.

IF expression See Conditional Breakpoints on page 141.

DO “command1;command2;…” See Setting a Breakpoint Action on page 140.
 Chapter 7� Using Breakpoints 139

BETA REVIEW
For Win32 applications, breakpoints set in the upper 2GB of address
space are global; they break in any context. Breakpoints set in the lower
2GB are context-sensitive; they trigger according to the following criteria
and SoftICE pops up:

� SoftICE only pops up if the address context matches the context in
which the breakpoint was set.

� If the breakpoint triggers in the same code module in which the
breakpoint was set, then SoftICE disregards the address context and
pops up. This means that a breakpoint set in a shared module like
KERNEL32.DLL breaks in every address context that has the module
loaded, regardless of what address context was selected when the
breakpoint was set.

Breakpoints set on MS-DOS and 16-bit Windows programs are context-
sensitive in the sense that the breakpoint only affects the NTVDM
process in which the breakpoint was set. The breakpoint never crosses
NTVDMs, even if the same program is run multiple times.

Breakpoint contexts are more important for BPM-type breakpoints than
for BPX. BPM sets an x86 hardware breakpoint that triggers on a certain
virtual address. Because the CPU breakpoint hardware knows nothing of
address spaces, it could potentially trigger on an unrelated piece of code
or data. Breakpoint contexts give SoftICE the ability to discriminate
between false traps and real ones.

Virtual Breakpoints
In SoftICE, you can set breakpoints in Windows modules before they
load, and it is not necessary for a page to be present in physical memory
for a BPX (INT 3) breakpoint to be set. In such cases, the breakpoint is
virtual; it will be automatically armed when the module loads or the page
becomes present. Virtual breakpoints can only be set on either symbols
or source lines.

Setting a Breakpoint Action
You can set a breakpoint to execute a series of SoftICE commands,
including user-defined macros, after the breakpoint is triggered. You
define these breakpoint actions with the DO option, which is available
with every breakpoint type:

DO “command1;command2;…”
140 Using SoftICE

BETA REVIEW
The body of a breakpoint action definition is a sequence of SoftICE
commands, or other macros, separated by semicolons. You need not
terminate the final command with a semicolon.

Breakpoint actions are closely related to macros. Refer to Working with
Persistent Macros on page 205 for more information about macros.
Breakpoint actions are essentially unnamed macros that do not accept
command-line arguments. Breakpoint actions, like macros, can call upon
macros. In fact, a prime use of macros is to simplify the creation of
complex breakpoint actions.

If you need to embed a literal quote character (") or a percent sign (%)
within the macro (breakpoint) body, precede the character with a
backslash character (\). To specify a literal backslash character, use two
consecutive backslashes (\\).

If a breakpoint is being logged (refer to the built-in function BPLOG on
page 145), the action will not be executed.

The following examples illustrate the basic use of breakpoint actions:

BPX EIP DO “dd eax”

BPX EIP DO “data 1;dd eax”

BPMB dataaddr if (byte(*dataaddr)==1) do “? IRQL”

Conditional Breakpoints
Conditional breakpoints provide a fast and easy way to isolate a specific
condition or state within the system or application you are debugging.
By setting a breakpoint on an instruction or memory address and
supplying a conditional expression, SoftICE will only trigger if the
breakpoint evaluates to non-zero (TRUE). Because the SoftICE expression
evaluator handles complex expressions easily, conditional expressions
take you right to the problem or situation you want to debug with ease.

All SoftICE breakpoint commands (BPX, BPM, BPIO, BMSG, and BPINT)
accept conditional expressions using the following syntax:

breakpoint-command [breakpoint options] [IF conditional
expression]
[DO “commands”]

The IF keyword, when present, is followed by any expression that you
want to be evaluated when the breakpoint is triggered. The breakpoint
will be ignored if the conditional expression is FALSE (zero). When the
conditional expression is TRUE (non-zero), SoftICE pop ups and displays
the reason for the break, which includes the conditional expression.
 Chapter 7� Using Breakpoints 141

BETA REVIEW
The following examples show conditional expressions used during the
development of SoftICE.

Note: Most of these examples contain system-specific values that vary
depending on the exact version of the Windows NT family you are
running.

� Watch a thread being activated:

bpx ntoskrnl!SwapContext IF (edi==0xFF8B4020)

� Watch a thread being deactivated:

bpx ntoskrnl!SwapContext IF (esi==0xFF8B4020)

� Watch CSRSS HWND objects (type 1) being created:

bpx winsrv!HMAllocObject IF (esp->c == 1)

� Watch CSRSS thread info objects (type 6) being destroyed:

bpx winsrv!HMFreeObject+0x25 IF (byte(esi->8) == 6)

� Watch process object-handle-tables being created:

bpx ntoskrnl!ExAllocatePoolWithTag IF (esp->c == ‘Obtb’)

� Watch a thread state become terminated (enum == 4):

bpmb _thread->29 IF byte(_thread->29) == 4)

� Watch a heap block (230CD8) get freed:

bpx ntddl!RtlFreeHeap IF (esp->c == 230CD8)

� Watch a specific process make a system call:

bpint 2E if (process == _process)

Many of the previous examples use the thread and process intrinsic
functions provided by SoftICE. These functions refer to the active thread
or process in the operating system. In some cases, the examples precede
the function name with an underscore “_”. This is a special feature that
makes it easier to refer to a dynamic value such as a register’s contents or
the currently running thread or process as a constant. The following
examples should help to clarify this concept:

� This example sets a conditional breakpoint that will be triggered if
the dynamic (run-time) value of the EAX register equals its current
value.

bpx eip IF (eax == _eax)

This is equivalent to:

? EAX

00010022

bpx eip IF (eax == 10022)
142 Using SoftICE

BETA REVIEW
� This example sets a conditional breakpoint that will be triggered if
the value of an executing thread’s thread-id matches the thread-id of
the currently executing thread.

bpx eip IF (tid == _tid)

This is equivalent to:

? tid

8

bpx eip IF (tid == 8)

When you precede a function name or register with an underscore in an
expression, the function is evaluated immediately and remains constant
throughout the use of that expression.

Conditional Breakpoint Count Functions

SoftICE supports the ability to monitor and control breakpoints based on
the number of times a particular breakpoint has or has not been
triggered. You can use the following count functions in conditional
expressions:

� BPCOUNT
� BPMISS
� BPTOTAL
� BPLOG
� BPINDEX

BPCOUNT

The value for the BPCOUNT function is the current number of times that
the breakpoint has been evaluated as TRUE.

Use this function to control the point at which a triggered breakpoint
causes a popup to occur. Each time the breakpoint is triggered, the
conditional expression associated with the breakpoint is evaluated. If the
condition evaluates to TRUE, the breakpoint instance count (BPCOUNT)
increments by one. If the conditional evaluates to FALSE, the breakpoint
miss instance count (BPMISS) increments by one.

The fifth time the breakpoint triggers, the BPCOUNT equals 5, so the
conditional expression evaluates to TRUE and SoftICE pops up.

bpx myaddr IF (bpcount==5)

Use BPCOUNT only on the righthand side of compound conditional
expressions for BPCOUNT to increment correctly:

bpx myaddr if (eax==1) && (bpcount==5)
 Chapter 7� Using Breakpoints 143

BETA REVIEW
Due to the early-out algorithm employed by the expression evaluator, the
BPCOUNT==5 expression will not be evaluated unless EAX==1. (The C
language works the same way.) Therefore, by the time BPCOUNT==5 gets
evaluated, the expression is TRUE. BPCOUNT will be incremented and if
it equals 5, the full expression evaluates to TRUE and SoftICE pops up. If
BPCOUNT != 5, the expression fails, BPMISS is incremented and SoftICE
will not pop up (although BPCOUNT is now 1 greater).

Once the full expression returns TRUE, SoftICE pops up, and all instance
counts (BPCOUNT and BPMISS) are reset to 0.

Note: Do NOT use BPCOUNT before the conditional expression, otherwise
BPCOUNT will not increment correctly:
bpx myaddr if (bpcount==5) && (eax==1)

BPMISS

The value for the BPMISS expression function is the current number of
times that the breakpoint was evaluated as FALSE.

The expression function is similar to the BPCOUNT function. Use it to
specify that SoftICE pop up in situations where the breakpoint is
continually evaluating to FALSE. The value of BPMISS will always be one
less than you expect, because it is not updated until the conditional
expression is evaluated. You can use the (>=) operator to correct this
delayed update condition.

bpx myaddr if (eax==43) || (bpmiss>=5)

Due to the early-out algorithm employed by the expression evaluator, if
the expression eax==43 is ever TRUE, the conditional evaluates to TRUE
and SoftICE pops up. Otherwise, BPMISS is updated each time the
conditional evaluates to FALSE. After 5 consecutive failures, the
expression evaluates to TRUE and SoftICE pops up.

BPTOTAL

The value for the BPTOTAL expression function is the total number of
times that the breakpoint was triggered.

Use this expression function to control the point at which a triggered
breakpoint causes a popup to occur. The value of this expression is the
total number of times the breakpoint was triggered (refer to the Hits field
in the output of the BSTAT command) over its lifetime. This value is
never cleared.
144 Using SoftICE

BETA REVIEW
The first 50 times this breakpoint is triggered, the condition evaluates to
FALSE and SoftICE will not pop up. Every time after 50, the condition
evaluates to TRUE, and SoftICE pops up on this and every subsequent
trap.

bpx myaddr if (bptotal > 50)

You can use BPTOTAL to implement functionality identical to that of
BPCOUNT. Use the modulo “%” operator as follows:

if (!(bptotal%COUNT))

The COUNT is the frequency with which you want the breakpoint to
trigger. If COUNT is 4, SoftICE pops up every fourth time the breakpoint
triggers.

BPLOG

Use the BPLOG expression function to log the breakpoint to the history
buffer. SoftICE does not pop up when logged breakpoints trigger.

Note: Actions only execute when SoftICE pops up, so using actions with
the BPLOG function is pointless.

The BPLOG expression function always returns TRUE. It causes SoftICE to
log the breakpoint and relevant information about the breakpoint to the
SoftICE history buffer.

Any time the breakpoint triggers and the value of EAX equals 1, SoftICE
logs the breakpoint in the history buffer. SoftICE will not popup.

bpx myaddr if ((eax==1) && bplog)

BPINDEX

Use the BPINDEX expression function to obtain the breakpoint index to
use with breakpoint actions.

This expression function returns the index of the breakpoint that caused
SoftICE to pop up. This index is the same index used by the BL, BC, BD,
BE, BPE, BPT, and BSTAT commands. You can use this value as a
parameter to any command that is being executed as an action.

The following example of a breakpoint action causes the BSTAT
command to be executed with the breakpoint that caused the action to
be executed as its parameter:

bpx myaddr do “bstat bpindex”
 Chapter 7� Using Breakpoints 145

BETA REVIEW
This example shows a breakpoint that uses an action to create another
breakpoint:

bpx myaddr do “t;bpx @esp if(tid==_tid) do \“bc bpindex\”;g”

Note: BPINDEX is intended to be used with breakpoint actions, and causes
an error if it is used within a conditional expression. Its use outside of
actions is allowed, but the result is unspecified and you should not
rely on it.

Using Local Variables in Conditional Expressions

SoftICE lets you use local variable names in conditional expressions as
long as the type of breakpoint is an execution breakpoint (BPX or BPM
X). SoftICE does not recognize local symbols in conditional expressions
for other breakpoint types, such as BPIO or BPMD RW, because they
require an execution scope. This type of breakpoint is not tied to a
specific section of executing code, so local variables have no meaning.

When using local variables in conditional expressions, functions
typically have a prologue where local variables are created and an
epilogue where they are destroyed. You can access local variables after the
prologue code completes execution and before the epilogue code begins
execution. Function parameters are also temporarily inaccessible using
symbol names during prologue and epilogue execution, because of
adjustments to the stack frame.

To avoid these restrictions, set a breakpoint on either the first or last
source code line within the function body. We’ll use the following Foobar
Function to explain this concept.

Foobar Function
1:DWORD foobar (DWORD foo)
2:{
3:DWORDfooTmp=0;
4:
5:if(foo)
6:{
7:fooTmp=foo*2;
8:}else{
9:fooTmp=1;
10:}
11:
12:return fooTmp;
13:}
146 Using SoftICE

BETA REVIEW
Source code lines 1 and 2 are outside the function body. These lines
execute the prologue code. If you use a local variable at this point, you
receive the following symbol error:

:BPX foobar if(foo==1)
error: Undefined Symbol (foo)

Set the conditional on the source code line 3, where the local variable
fooTmp is declared and initialized, as follows:

:BPX .3 if(foo==0)

Source code line 13 marks the end of the function body. It also begins
epilogue code execution; thus, local variables and parameters are out of
scope. To set a conditional at the end of the foobar function, use source
line 12, as follows:

:BPX.12 if(fooTmp==1)

Note: Although it is possible to use local variables as the input to a break-
point command, such as BPMD RW, you should avoid doing this.
Local variables are relative to the stack, so their absolute address
changes each time the function scope where the variable is declared
executes. When the original function scope exits, the address tied to
the breakpoint no longer refers to the value of the local variable.

Referencing the Stack in Conditional Breakpoints

If you create your symbol file with full symbol information, you can
access function parameters and local variables through their symbolic
names, as described in Using Local Variables in Conditional Expressions on
page 146. If, however, you are debugging without full symbol
information, you need to reference function parameters and local
variables on the stack. For example, if you translated a module with
publics only or you want to debug a function for an operating system,
reference function parameters and local variables on the stack.

Note: The following section is specific to 32-bit flat application or system
code.

Function parameters are passed on the stack, so you need to de-reference
these parameters through the ESP or EBP registers. Which one you use
depends on the function’s prologue and where you set the actual
breakpoint in relation to that prologue.

Most 32-bit functions have a prologue of the following form:

PUSHEBP

MOVEBP,ESP

SUBESP,size (locals)
 Chapter 7� Using Breakpoints 147

BETA REVIEW
Which sets up a stack frame as follows:

� Use either the ESP or EBP register to address parameters. Using the
EBP register is not valid until the PUSH EBP and MOV EBP, ESP
instructions are executed. Also note that once space for local
variables is created (SUB ESP, size) the position of the parameters
relative to ESP needs to be adjusted by the size of the local variables
and any saved registers.

� Typically you set a breakpoint on the function address, for example:

BPX IsWindow

When this breakpoint is triggered, the prologue has not been
executed, and parameters can easily be accessed through the ESP
register. At this point, use of EBP is not valid.

Note: This assumes a stack-based calling convention with arguments
pushed right-to-left.

To be sure that de-referencing the stack in a conditional expression
operates as you would expect, use the following guidelines.

� If you set a breakpoint at the exact function address, for example,
BPX IsWindow, use ESP+(param# * 4) to address parameters, where
param# is 1…n.

� If you set a breakpoint inside a function body (after the full prologue
has been executed), use EBP+(param# * 4)+4 to address parameters,
where param# is 1…n. Be sure that the routine does not use the EBP
register for a purpose other than a stack-frame.

Current EBP →

Current ESP →

PARAM n ESP+(n*4), or EBP+(n*4)+4
Pushed by
caller

PARAM #2 ESP+8, or EBP+C

PARAM #1 ESP+4, or EBP+8

RET EIP ⇐ Stack pointer on entry

Call prologue

SAVE EBP ⇐ Base pointer (PUSH EBP,
MOV EBP,ESP)

LOCALS+size-1

LOCALS+0
⇐ Stack pointer after prologue

(SUB ESP, size (locals))

SAVE EBX optional save of ‘C’ registers
Registers
saved by
compiler

SAVE ESI

SAVE EDI ⇐ Stack pointer after registers
are saved

Stack Top

Stack Bottom
148 Using SoftICE

BETA REVIEW
� Functions that are assembly-language based or are optimized for
frame-pointer omission may require that you use the ESP register,
because EBP may not be set up correctly.

Note: Once the space for local variables is allocated on the stack, the local
variables can be addressed using a negative offset from EBP. The first
local variable is at EBP-4. Simple data types are typically Dword sized,
so their offset can be calculated in a manner similar to function
parameters. For example, with two pointer local variables, one will
be at EBP-4 and the other will be at EBP-8.

Performance

Conditional breakpoints have some overhead associated with run-time
evaluation. Under most circumstances you see little or no effect on
performance when using conditional expressions. In situations where
you set a conditional breakpoint on a highly accessed data variable or
code sequence, you may notice slower system performance. This is due to
the fact that every time the breakpoint is triggered, the conditional
expression is evaluated. If a routine is executed hundreds of times per
second (such as ExAllocatePool or SwapContext), the fact that any type
of breakpoint with or without a conditional is trapped and evaluated
with this frequency results in some performance degradation.

Duplicate Breakpoints

Once a breakpoint is set on an address, you cannot set another
breakpoint on the same address. With conditional expressions, however,
you can create a compound expression using the logical operators (&&)
or (||) to test more than one condition at the same address.

Elapsed Time
SoftICE supports using the time stamp counter (RDTSC instruction) on
all Pentium and Pentium-Pro machines. When SoftICE first starts, it
displays the clock speed of the machine on which it is running. Every
time SoftICE pops up due to a breakpoint, the elapsed time displays since
the last time SoftICE popped up. The time displays after the break reason
in seconds, milliseconds, or microseconds:

Break due to G (ET=23.99 microseconds)
 Chapter 7� Using Breakpoints 149

BETA REVIEW
The Pentium cycle counter is highly accurate, but you must keep the
following two issues in mind:

1 There is overhead involved in popping SoftICE up and down. On a
100MHz machine, this takes approximately 5 microseconds. This
number varies slightly due to caching and privilege level changes.

2 If a hardware interrupt occurs before the breakpoint goes off, all the
interrupt processing time is included. Interrupts are off when SoftICE
pops up, so a hardware interrupt almost always goes off as soon as
the Windows NT family resumes.

Breakpoint Statistics
SoftICE collects statistical information about each breakpoint, including
the following:

� Total number of hits, breaks, misses, and errors

� Current hits and misses

Use the BSTAT command to display this information. Refer to the SoftICE
Command Reference for more information on the BSTAT command.

Referring to Breakpoints in Expressions
You can combine the prefix “BP” with the breakpoint index to use as a
symbol in an expression. This works for all BPX and BPM breakpoints.
SoftICE uses the actual address of the breakpoint.

To disassemble code at the address of the breakpoint with index 0, use
the command:

U BP0

Manipulating Breakpoints
SoftICE provides a variety of commands for manipulating breakpoints
such as listing, modifying, deleting, enabling, disabling, and recalling
breakpoints. Breakpoints are identified by breakpoint index numbers,
which are numbers ranging from 0 to FF (hex). Breakpoint index
numbers are assigned sequentially as breakpoints are added. The
breakpoint manipulation commands are described in Table 7-2 on
page 151.
150 Using SoftICE

BETA REVIEW
Note: Refer to the SoftICE Command Reference for more information on each
of these commands.

Using Embedded Breakpoints
It may be helpful for you to embed a breakpoint in your program source
rather than setting a breakpoint with SoftICE. To embed a breakpoint in
your program, do the following:

1 Place an INT 1 or INT 3 instruction at the desired point in the pro-
gram source.

2 To enable SoftICE to pop up on such embedded breakpoints, use one
of the following commands:

a SET I1HERE ON for INT 1 breakpoints

b SET I3HERE ON for INT 3 breakpoints

Table 7-2. SoftICE Breakpoint Manipulation Commands

Command Description

BD Disable a breakpoint.

BE Enable a breakpoint.

BL List current breakpoints.

BPE Edit a breakpoint.

BPT Use breakpoint as a template.

BC Clear (remove) a breakpoint.

BH Display breakpoint history.
 Chapter 7� Using Breakpoints 151

BETA REVIEW
152 Using SoftICE

BETA REVIEW
Chapter 8

Using Expressions
� Expressions

� Using the Expression Evaluator

� Supported Operators

� Forming Expressions

� Built-in Functions

� Expression Evaluator Type System

� Result Formats

Expressions
The SoftICE expression evaluator (EE) determines the values of
expressions used with SoftICE commands and conditional breakpoints.
The expression evaluator uses a C-like syntax, with full operator
precedence, arithmatic and logical operators, pointer operations, and a
data type system. If you are comfortable with the syntax of C or C++, the
SoftICE expression evaluator will feel quite natural and familiar.

The expression evaluator can operate on symbols defined in loaded
symbol files. It also understands literal values and register names in an
expression.

Other than the maximum length of a SoftICE command line (which is
equal to the width of the command window), there are no limitations on
the complexity of an expression. You can combine multiple operators,
operands, and expressions to create compound expressions for
conditional breakpoints or expression evaluation.

The SoftICE expression evaluator uses type information loaded from
symbol files (NMS files) for all of its operations. Type information can
come from any loaded symbol table, so the expression evaluator can
display values with user-defined types correctly. If no symbol tables are
loaded, the expression evaluator uses a small set of built-in basic types.
 153

BETA REVIEW
Typecasting is allowed by the expression evaluator using the standard C
syntax, and any value may be cast to any known type within an
expression.

Using the Expression Evaluator
Most of the SoftICE commands that take parameters use the expression
evaluator to resolve them. This means that commands can operate on
the results of complex expressions, which makes the command syntax
quite powerful. For example, you can use the DD command to display
the memory where a variable is located simply by entering DD &foo on
the command line. The expression evaluator will evaluate &foo, and
return an address, which the DD command will then display.

You can also access the expression evaluator directly by using the ?
command. When the expression evaluator is used in this way, the results
are simply displayed in the command window.

Supported Operators
The SoftICE expression evaluator supports the following operators sorted
by type:

Table 8-1. SoftICE Pointer Operators

Pointer Operators Name Example

-> Pointer Operator pstruct->element
ebp->8 (equivalent to *((*ebp)+8))

. Member Operator struct.element
eax.1c (equivalent to *(ebp+8))

* Dereference *pFoo
*esi (gets the value pointed to by esi)

& Indirection &foo (gets the address of foo)

[] Array Subscript foo[2] (gets the second element of the array Foo)

Table 8-2. SoftICE Math Operators

Math Operators Name Example

+ Unary + +42 (changes radix to decimal)

- Unary - -42 (negation, also changes radix to decimal)
154 Using SoftICE

BETA REVIEW
+ Addition foo + 1
eax + 0x040

- Subtraction foo – bar
eax – 40

* Multiplication foo * ecx
al * 100

/ Division foo / 5
bar / (eax << 4)

% Modulo ecx % 4
foo % bar

<< Logical Left Shift bl << 1

>> Logical Right Shift 0x80000 >> 2

Table 8-3. SoftICE Bitwise Operators

Bitwise Operators Name Example

& Bitwise AND foo & ff
esi & 2020

| Bitwise OR f000 | 10
eax | 80400000

^ Bitwise XOR ebx ^ 0xFF

~ Bitwise NOT ~al
~(foo & 0xf)

Table 8-4. SoftICE Logical Operators

Logical Operators Name Example

! Logical NOT !eax
!(foo == 1)

&& Logical AND foo && bar
eax && (ebx > 5)

|| Logical OR foo || (ebp.8)

== Compare Equality ecx == 4

!= Compare Inequality foo != 0

< Less Than ecx < A00

> Greater Than foo > bar

Table 8-2. SoftICE Math Operators (Continued)

Math Operators Name Example
 Chapter 8� Using Expressions 155

BETA REVIEW
Pointer Operations

Pointer operations on symbols in the SoftICE expression evaluator
function in exactly the same way as they do in C. The expression
evaluator also allows registers to be used as pointers. Table 8-6 provides
some additional descriptions for these operations.

<= Less or Equal esi <= &foo

>= Greater or Equal foo >= (bar % 1000)

Table 8-5. SoftICE Special Operators

Special Operators Name Example

. Line Number .123 (value is address of line 123 in the current source file)

() Grouping Symbols (eax+4) * 8

(typename) Typecast (uchar)eax

: Segment Override fs:50
1b:40100

function() Macro Function WSTR(eax)

Table 8-4. SoftICE Logical Operators (Continued)

Logical Operators Name Example

Table 8-6. Pointer Operations

Operator Example Equivalent To... Details

-> esp->4 *((*esp)+4) The first operand is treated as a pointer-to-struct

foo->bar *((*foo)+offset of bar) This is the familiar form, where foo is a pointer-to-struct (or class) and bar
is an element of the structure. If foois not a pointer-to-struct, an error will
be produced.

. esp.4 *(esp+4) The first operand is treated as a structure, and the offset is added to it
before dereferencing. This is the correct form for retrieving parameters
passed on the stack.

foo.bar *(foo+offset of bar) In this case, foo must be a structure (or class), and bar an element of that
structure.

* *esp *DS:esp Returns the value pointed to by the stack pointer. Since no selector was
specified, the current value of DS is used.

*foo *DS:foo If foo is a pointer, this returns the value it points to. If foo isan integer, the
expression evaluator will attempt to use the value of foo as a pointer.

*fs:0 *fs:0 Returns the value at the specified selector:offset address.
156 Using SoftICE

BETA REVIEW
Operator Precedence

Operator precedence in the SoftICE expression evaluator is the same as
that of C, with the addition of the special SoftICE operators. As with C,
operator precedence can be overridden by grouping operations within
parentheses; the expressions within parentheses are always evaluated
before the expressions outside.

Table 8-7 lists all the operators in order of precedence, with highest
precedence at the top of the table. Operators with the same precedence
are evaluated according to associativity.

& &foo &foo Returns the address of foo.

&foo.bar &(*(foo+offset of bar)) Returns the address of element bar in structure foo.

&esp Illegal Registers do not have addresses, so this is an error.

&0xff Illegal Literals do not have addresses, so this is also illegal.

[] foo[4] foo[4] Returns the value of the fifth element in array foo. If foo is not an array
type, an error is generated.

foo[4][2] foo[4][2] This will work, as long as foo was declared as a multi-dimensional array.

esp[2] Illegal The array operator cannot be used on registers.

Table 8-6. Pointer Operations (Continued)

Operator Example Equivalent To... Details

Table 8-7. SoftICE Operator Precedence

Operator Associates Comment

(), function(), []
->,.,#

left-to-right grouping, macro function, array subscript
pointer operator, member operator, symbol
name override

: left-to-right selector override

*, &
unary +
unary -
!, ~
.

right-to-left dereference, indirection
default radix = decimal
negation, default radix = decimal
logigal and binary negation
line number

(typename) right-to-left typecast

*, /, % left-to-right multiplication, division, modulo

+, - left-to-right addition, subtraction

<<, >> left-to-right shift
 Chapter 8� Using Expressions 157

BETA REVIEW
Forming Expressions
The SoftICE expression evaluator accepts three basic types of operands:
registers, literals, and symbols. In general, these types can be used
interchangeably in expressions; anywhere a register can be used, a
symbol or literal is also valid. There are some exceptions: for example,
taking the address of a register or literal is meaningless and will result in
an error.

Registers

The expression evaluator understands all of the registers in the standard
x86 register set, as well as a few of the x86 control registers. Where
registers have multiple aliases (such as al, ah, ax, eax), the expression
evaluator will return the correct data from the correct position in the
register. Register names in expressions are not case sensitive. Table 8-8
displays all of the register names understood by the expression evaluator.

<, >, <=, >= left-to-right comparisons

==, != left-to-right equality comparisons

& left-to-right bitwise AND

^ left-to-right bitwise XOR

| left-to-right bitwise OR

&& left-to-right logical AND

|| left-to-right logical OR

Table 8-7. SoftICE Operator Precedence (Continued)

Operator Associates Comment

Table 8-8. Register Names Understood by the Expression Evaluator

Form 1 Form 2 Form 3 Form 4

EAX AX AH AL

EBX BX BH BL

ECX CX CH CL

EDX DX DH DL

ESI SI

EDI DI
158 Using SoftICE

BETA REVIEW
The EFL and FL register names can be used to retrieve the values of the
EFLAGS register, but the expression evaluator also includes some built-in
aliases for individual flags which can be used in expressions. For more
information, refer to the section on Built-in Functions on page 164.

Register names take precedence over any symbols which may have the
same names. An override character, ‘#’, can be pre-pended to a symbol
name to force the expression evaluator to treat the name as a symbol,
rather than a register.

Literals

The SoftICE expression evaluator has two basic types of literals: numeric
values and character constants. The two are interchangeable within
expressions, but the syntax for entering them is different.

Internally, the expression evaluator uses a 64-bit representation for
storing literals, so the maximum value that can be entered as a literal is
264-1, or 0xFFFFFFFF FFFFFFFF.

Numeric literals are entered as simple integers in an expression. The
default radix used by the expression evaluator is hexadecimal, so hex
numbers can be entered in expressions without preceding them with
‘0x’. This differs from standard C syntax, where numbers are assumed to
be decimal unless preceded by ‘0x’.

EBP BP

ESP SP

EIP IP

CS

DS

SS

ES

FS

GS

EFL (EFLAGS) FL (FLAGS)

CR2

CR3

Table 8-8. Register Names Understood by the Expression Evaluator (Continued)

Form 1 Form 2 Form 3 Form 4
 Chapter 8� Using Expressions 159

BETA REVIEW
Decimal numbers can be entered using the unary ‘+’ and ‘-‘ operators,
which change the radix of the number that follows to decimal (unless
the number that follows includes hex characters or is preceded by ‘0x’.)

Table 8-9 illustrates how the expression evaluator will interpret numeric
literal inputs.

Character constants are entered using single-quotes. The internal
representation of a character constant is also 64-bits wide, so a single
character constant may contain up to 8 bytes of data, all of which will be
converted into a single integer value. Character values can be entered as
characters, which are translated into their ASCII representations; decimal
values up to three digits long preceded by ‘\’, or hex values up to two
digits long preceded by ‘\x’. Character constants with multiple bytes are
translated to integers, with the first byte in the constant becoming the
least-significant byte of the integer.

Character constants can also contain most of the common character
escape sequences used in C. These all consist of a backslash followed by a
single character, as shown in Table 8-10.

Table 8-9. Numeric Literal Interpretation

Input Interpretation Notes

FF Hex Default interpreation for numbers is hexadecimal.

123 Hex

0x123 Hex

+42 Decimal Unary+ overrides the default radix.

-42 Decimal Unary- overrides the default radix.

+1A Hex Hexadecimal digits cancel the unary+ override.

-0x12 Hex 0x prefix cancels the unary- override.

Table 8-10. Common Character Escape Sequences

Sequence ASCII Value (Hex)

\a Bell (0x7)

\b Backspace (0x8)

\f Formfeed (0xC)

\n Newline (0xA)

\r Carriage Return (0xD)
160 Using SoftICE

BETA REVIEW
Table 8-11 shows some valid character constants.

Symbols

Symbol names are the symbolic representation of an address or value.
They are defined in symbol tables, export tables, or via the SoftICE NAME
command, during debugging.

Symbol names in SoftICE differ from symbols defined in C or C++
programs. All compilers add some form of decoration to the names
defined in a program, and this decoration often includes characters
which are not valid in C and C++ symbol names. SoftICE therefore
accepts a wider range of characters in symbol names than a compiler
would. Table 8-12 shows the characters which may be found in a legal
symbol name. Symbols must begin with one of the characters marked as
valid first characters in a symbol.

\t Tab (0x9)

\v Vertical Tab (0xB)

\? Question Mark (0x3F)

\’ Single Quote (0x27)

\” Double Quote (0x22)

\\ Backslash (0x5C)

Table 8-11. Valid Character Constants

Input Notes

‘T’ Result is the ASCII value of the character ‘T’, or 0x54.

‘\84’ Result is the ASCII character with the decimal value of 84, or ‘T’.

‘\x54’ Result is the ASCII character with the hex value of 0x54, or ‘T’.

‘ABCD’ Result is the DWORD value of the four bytes, with ‘A’ as the least-
significant byte, or 0x44434241.

‘ABCDEFGH’ Result is the QWORD value of the 8 bytes, with ‘A’ as the least-significant
byte, or 0x4847464544434241.

‘\85\x54’ Result is ‘TU’.

‘\n’ Result is newline (0xA).

Table 8-10. Common Character Escape Sequences (Continued)

Sequence ASCII Value (Hex)
 Chapter 8� Using Expressions 161

BETA REVIEW
The scope operator ‘::’ is allowed in symbols. However, note that the
“operator” is in this context simply part of the symbol name, and is not
functioning as a true operator. Any number of scope operators are
allowed in a symbol name, so namespaces and nested classes can be
evaluated properly.

Template syntax is also allowed to appear in symbols. The type names
contained within the template delimiters ‘<’ and ‘>’ are considered part
of the symbol name. Commas are allowed to appear in templates as well.

Operator overrides are also allowed; in this case the last character of the
symbol is allowed to be any of the valid C++ operators.

If a symbol has the same name as one of the register names, the
expression evaluator will always return the value in the register when the
symbol name is given. The command, ? ds, for example, will return the
contents of the DS register, not the value of any symbol of that name. In
this case, a special override, ‘#’, must be pre-pended to the symbol name
to retrieve the symbol value. The command, ? #ds, will return the value
of a symbol named ‘ds’.

Table 8-12. Characters Contained in a Legal Symbol Name

Characters Valid as First Character of Name?

A through Z
a through z

Yes

0 through 9 No

@ Yes

$ Yes

_ (underscore) Yes

` (single back-quote) Yes

´ (single quote) No

? No

! No

~ No

<...> (template syntax) No

:: (scope operator) No

operator (operator override syntax) No
162 Using SoftICE

BETA REVIEW
Each symbol file loaded into SoftICE is placed in a separate table, and
only one symbol table can be active at a time. (Refer to the TABLE
command in the SoftICE Command Reference for more information on
changing the active table.)

To specify a symbol from an inactive symbol table in an expression,
precede the symbol with the table name, followed by an exclamation
point, followed by the symbol name. For example:

table-name!symbol-name

Symbols that are loaded from export tables or defined by the NAME
command are always active, because SoftICE treats these symbol sources
as a homogenous unit.

Note: Symbol tables now do time and date checking to ensure that the
symbol files are up to date with the binary in use. Correct any
discrepancies by retranslating and reloading the symbol table.

Symbol Sources and Search Order

When searching for a symbol used in an expression, SoftICE follows the
same scope convention used in C/C++: locals are searched first, then
globals. If both of these searches fail, SoftICE will search in any loaded
export tables, then the user-defined names, and finally the list of built-in
functions (see the next section). Locals which are not currently in-scope
cannot be used in expressions, except when setting a conditional
breakpoint. SoftICE will stop searching as soon as it finds a match, so
local symbols will override globals with the same name, just as they do in
C. The following shows the symbol search order used by the expression
evaluator:

� Local Symbols in the current Scope
� Global Symbols
� Exports from any Loaded Export Table
� User-Defined Names (from the NAME command)
� Built-in Functions (refer to Built-in Functions on page 164.)

If the symbol is not found in any of these places, and it contains only
valid hex digits, SoftICE will interpret it as a literal; otherwise, the
expression evaluator will return an error.

Symbols which are not yet instantiated, meaning that the module that
contains them is not currently loaded into memory, cannot be used in
expressions (except when setting a conditional breakpoint).
Uninstantiated symbols can be viewed using the SYM or EXP commands.
 Chapter 8� Using Expressions 163

BETA REVIEW
When SoftICE searches any of the symbol sources shown above, it uses a
case-insensitive search routine by default. Case sensitivity for symbol
searching can be turned on or off using the SET CASESENSITIVE [on | off]
command. In addition, if a symbol search in the locals, globals, or
exports fails, SoftICE will add a leading underscore to the symbol and
repeat the search. This will find user symbols that have had standard C
name decoration added, where foo becomes _foo after compilation.

Built-in Functions
The SoftICE expression evaluator has a number of built-in functions
which can be used in expressions. Most of the built-in functions are
simply aliases for useful values within SoftICE or the operating system;
some take the form of function-style macros that translate data or return
information about a parameter.

The simple aliases behave exactly like symbols: when used in an
expression, the expression evaluator will translate the symbol into a
value of the correct type. The function-style macros use the C-style
function syntax: the name of the macro is followed by a parameter
enclosed in parentheses. All of the function-style macros take exactly one
parameter.

Table 8-13. SoftICE Predefined Functions

 Name Description Example

FALSE 0 ? eax == FALSE

TRUE 1 ? foo == TRUE

NULL 0 ? pFoo != NULL

CFL Carry FLag

PFL Parity Flaf

AFL Auxiliary Flag

ZFL Zero Flag

SFL Sign Flag

OFL Overflow Flag

RFL Resume Flag

TFL Trap Flag

DFL Direction Flag
164 Using SoftICE

BETA REVIEW
IFL Interrupt Flag

NTFL Nested Task Flag

IOPL Current I/O Privilege Flag

VMFL Virtual Machine Flag

IRQL Windows OS IRQ Level

DataAddr Returns the address of the first data item
displayed in the active Data window

CodeAddr Returns the address of the first
instruction displayed in the Code window

EAddr Effective address, if any, of the current
instruction

EValue Current value of the effective address

Process Kernel Process Environment Block
(KPEB) of the active OS process

Thread Kernel Thread Environment Block
(KTEB) of the active OS thread

PID Active process ID

TID Active thread ID

BPCount Breakpoint Instance Count. For these BP
functions, refer to Conditional Breakpoint
Count Functions on page 143

bp <bp params> IF
bpcount==0x10

BPTotal Breakpoint total count bp <bp params> IF
bptotal>0x10

BPMiss Breakpoint instance miss count bp <bp params> IF
bpmiss==0x20

BPLog Breakpoint silent log bp <bp params> IF bplog

BPIndex Current Breakpoint Index # bp <bp params> DO “bd
bpindex”

BPx Address of the specified breakpoint, if set ? BP2

BYTE() Get low-order byte ? Byte(0x1234) = 0x34

WORD() Get low-order word ? Word(0x12345678) = 0x5678

DWORD() Get low-order dword ? Dword(10000000B) =0xB

HIBYTE() Get high-order byte ? Hibyte(0x1234) = 0x12

Table 8-13. SoftICE Predefined Functions (Continued)

 Name Description Example
 Chapter 8� Using Expressions 165

BETA REVIEW
Eaddr Function

The EAddr function returns the effective address, if any, that the
instruction at the current EIP uses. (The effective address of the current
instruction, if any, and the value at that address are also displayed in the
Register Window directly beneath the flags).

The x86 processor supports a variety of addressing modes such as
register+offset and register+register. The result of computing the memory
address for an instruction is called the effective address. An instruction
that uses a memory addressing mode is said to have an effective address
as its source or destination.

Some instructions do not involve an effective address, either because
only registers are used or because the memory addressing is done in a
way specific to the instruction type, such as with PUSH and POP
instructions. An x86 instruction can never have an effective address as
both source and destination.

For example, if the current instruction is:

MOV ECX,[ESP+4]

The EAddr function returns a value equal to ESP+4, that is, the current
stack pointer plus 4.

If the current instruction is:

ADD BYTE PTR [ESI+EBX+2],55

EAddr returns the result of ESI+EBX+2.

HIWORD() Get high-order word ? Hiword(0x12345678) = 0x1234

HIDWORD() Get high-order dword ? Hidword(10000000B) = 0x1

SWORD() Convert signed byte to signed word ? Sword(0x80) = 0xFF80

LONG() Convert signed byte or word to signed
long

? Long(0xFF) = 0xFFFFFFFF

WSTR() Display as Unicode string ? WSTR(eax)

FLAT() Convert a selector-relative address to a
linear (flat) address

? Flat(fs:0) = 0xFFDFF000

SIZEOF() Returns the size of the type of the
specified parameter

? Sizeof(foo)

Table 8-13. SoftICE Predefined Functions (Continued)

 Name Description Example
166 Using SoftICE

BETA REVIEW
Evalue Function

EValue returns the value at the effective address, if any, of the current
instruction. This is not necessarily the same as EAddr.0, because EValue
is sensitive to the operand size. EValue returns a byte, word, or dword as
appropriate.

Expression Evaluator Type System
The SoftICE expression evaluator uses type information loaded from
symbol files (NMS files) for all of its operations. Type information is used
in both the evaluation and display of expression results.

While SoftICE understands all the defined types for a module, the goal of
the expression evaluator is to be flexible rather than strict. Wherever
possible, the expression evaluator makes reasonable assumptions to allow
expressions to produce a result. For example, basic arithmetic operations
on void pointers are permitted by the expression evaluator. Member
operations on registers, for example ? ebp.4, are also allowed to succeed
– this is a convenient syntax for retrieving parameters to functions when
source is not available.

Register values and literals used in expressions will not have an
associated type. In this case the expression evaluator will use a basic
unsigned integer type of the appropriate size. For registers, a BYTE,
WORD, or DWORD type is used; for literals DWORD is the default type,
unless the value is larger than the maximum value of a DWORD, in
which case a 64-bit QUAD type is used.

Results Types

The SoftICE expression evaluator will determine the type of the result
from the types of the operands. For example, given an array of integers
declared like this:

int TinyArray[] = { 1, 2, 3, 4 };

The expression:

? TinyArray[1]

will cause SoftICE to display the second element of the array, which will
be of type int.
 Chapter 8� Using Expressions 167

BETA REVIEW
Alternately, if you have a pointer-to-char expression declared like this:

char *str = "Twas Brillig"

the expression

? *str

will result in the following display:

<char> = 0x54, ’T’, 84

There are some cases where the expression evaluator will produce a
different result type than a compiler would.

Taking the address of a symbol in the expression evaluator (&foo), will
produce a result with a type of PVOID, because the expression evaluator
does not have the ability to synthesize a pointer type to a user-defined
type. You can overcome this limitation by casting the result to the
desired type, if one is defined in your symbol table.

Where arithmetic is used on symbols of differing types, the expression
evaluator does not do type promotion as a compiler would. Instead it
uses the type of the left-hand operand as the result type. For example, in
this expression:

? ’t’ + 1

The type of the first operand (t) is BYTE (an unsigned, 8-bit value), and
the type of the second operand is DWORD (32-bit unsigned). The
resulting type will be BYTE, not DWORD as you might expect. If a
DWORD result is required, you can either reverse the order of the
operands, or cast the result to a DWORD. Internally, the expression
evaluator evaluates all arithmetic operations on 64-bit values, so
typecasting the result will produce the correct answer even if the result
overflows a BYTE-sized value.

In practice these differences between the expression evaluator and a
compiler are generally unimportant.

Typecasting

The expression evaluator supports C-style typecasting, in the form of
‘(type-name)foo’. Unlike C, the expression evaluator does not alter the
binary representation of the value when doing typecasting, so it does not
handle sign extension (see the section “Built-in Functions” on page 164
for some routines that do).
168 Using SoftICE

BETA REVIEW
Typecasting can be used to cast any value to any type in the active
symbol table. Type names used in typecasting are always case-sensitive,
so be sure you have entered the type name verbatim. There are also some
default type names which are available even if no symbol table is loaded.
These are shown in Table 8-14.

Note: A user-defined type or symbol of the same name in the active symbol
table will override these default typecasts.

The pointer and member operators, ‘->’ and ‘.’, can operate on
expressions after typecasting. So ? ((MYSTRUCT)fedc0000).member is
a valid expression if ‘member’ is found in the ‘MYSTRUCT’ type.

Table 8-14. Default Typecasts

Type-name Result

BYTE unsigned 8-bit

UCHAR unsigned 8-bit

CHAR signed 8-bit

WORD unsigned 16-bit

USHORT unsigned 16-bit

SHORT signed 16-bit

DWORD unsigned 32-bit

ULONG unsigned 32-bit

LONG signed 32-bit

UQUAD unsigned 64-bit

ULONGLONG unsigned 64-bit

QUAD signed 64-bit

LONGLONG signed 64-bit

PVOID pointer to 32-bit value
 Chapter 8� Using Expressions 169

BETA REVIEW
Result Formats
When the ? command is used to evaluate an expression, the expression
evaluator displays the results differently depending on the result type.
Structures and classes are expanded, and all their data elements are
displayed. Pointers to values or to complex types are dereferenced and
the value or type pointed to is displayed along with the pointer value.
Basic integer types are displayed in three different formats: hex, decimal,
and a character representation. Strings of characters or wide characters
are displayed up to their trailing NUL characters. Arrays are displayed up
to their maximum dimensions.

The format used to display typed values can be changed using the SET
TYPEFORMAT command. The options represent different arrangements
of the type information, the symbol name, and the value. See the SET
command documentation in the SoftICE Command Reference for more
information.
170 Using SoftICE

BETA REVIEW
Chapter 9

Loading Symbols for System
Components
� Loading Export Symbols for DLLs and EXEs

� Using Unnamed Entry Points

� Using Export Names in Expressions

� Using the Windows NT family Symbol Files with SoftICE

� Using Windows 9x Symbol (.SYM) Files with SoftICE

Loading Export Symbols for DLLs and EXEs
Exports are an aspect of the 16-bit and 32-bit Windows executable
formats that enable dynamic (run-time) linking, usually between an
executable that imports the functions and a .DLL that exports the
functions.

The information in the executable file format associates an ASCII name
and an ordinal number, or sometimes just an ordinal number, to an
entry point in the module. It is advantageous to load the export
information as symbols into the debugger, particularly when debugging
information is not available. Exports are ordinarily used only by DLLs,
but occasionally an .EXE may have exports as well; NTOSKRNL.EXE is
such a case.

You can set the SoftICE initialization settings to load export symbols for
any 16-bit or 32-bit .DLL or .EXE. When SoftICE loads, it loads the export
files and makes their symbols available for use in any SoftICE expression.
They are also automatically displayed when disassembling code. To see a
list of all exported symbols that SoftICE knows about, use the EXP
command. Refer to Modifying SoftICE Initialization Settings on page 191 for
more information about pre-loading exports.

When displaying 32-bit exports in SoftICE, if the module is not yet
loaded, the ordinal segment displays as FE: and the offset is the offset
 171

BETA REVIEW
from the 32-bit image base. Once the module is mapped into any
process, selector:offset appears. The offset now contains the image base
address added in.

When a 32-bit module is unloaded from all processes that might have
opened it, all addresses return to the ordinal FE:offset address.

Note: When a .DLL is mapped into two processes at different base virtual
addresses, the export table uses the base address of the first process
to open the .DLL, but the addresses will be wrong for the other. You
can normally avoid this by choosing an appropriate preferred load
address for the .DLL or by rebasing the .DLL.

The only 16-bit exports loaded are those from the non-resident export
section; this is usually most or all of the exports for the module.

Using Unnamed Entry Points
For 32-bit exports, SoftICE shows all exported entry points even if they
do not have names associated with them. For 16-bit exports, SoftICE only
shows names. For exported entry points without names, SoftICE forms a
name in the following format:

ORD_xxxx

where xxxx is the ordinal number.

Names of this form can overlap, because multiple DLLs can have
unnamed ordinals. To be sure you are using the correct symbol, precede
the symbol with the module name followed by an exclamation point.

To refer to KERNEL32 export ordinal number one, use the following
expression:

KERNEL32!ORD_0001

The number following the ORD_ prefix does not require the correct
number of leading zeroes; either ORD_0001 or ORD_1 is acceptable. The
following expression is equivalent to the preceding example:

KERNEL32!ORD_1
172 Using SoftICE

BETA REVIEW
Using Export Names in Expressions
SoftICE searches all 32-bit export tables prior to searching 16-bit export
tables. This means that if the same name exists in more than one type of
table, SoftICE uses the 32-bit export table. If you need to override this
behavior, precede the export symbol with the module name followed by
an exclamation point.

When specifying the symbol GlobalAlloc, SoftICE uses the 32-bit export
symbol from KERNEL32.DLL rather than the 16-bit export symbol of the
same name in KRNL386.EXE. You can access the 16-bit version of
GlobalAlloc by specifying the complete export symbol name:

KERNEL!GlobalAlloc

Also, for each type of export (32-bit and 16-bit), the search order is
controlled by the order in which the exports are loaded.

Loading Exports Dynamically

To load 32-bit exports dynamically, do the following:

1 Start Symbol Loader.

2 Either choose LOAD EXPORTS from the File menu or click the LOAD
EXPORTS button.

3 The Load Exports window appears.

4 Select the files you want to load and click OPEN.

Using the Windows NT family Symbol Files with SoftICE
Microsoft supplies debugging information for most Windows NT family
components. You can find the debug information on the Windows CD-
ROM, or as a download from Microsoft. The Symbol Retriever tool,
included with SoftICE, is a convenient way of retrieving symbol
information directly from Microsoft's public symbol server for any given
system component.

In older versions of the operating system, Microsoft supplied debug
information in the form of .DBG files, which contained COFF debug data
for the corresponding component. Since Windows 2000, debug
information has been available in the form of .PDB files, which are in
Microsoft's Program Database format. The procedure for loading symbol
information from these two file formats is slightly different.
 Chapter 9� Loading Symbols for System Components 173

BETA REVIEW
To load .DBG files into SoftICE, use Symbol Loader to translate the file
into an .NMS file and load it. To load a .PDB file into SoftICE, open the
module itself with Symbol Loader, then translate to an .NMS file and load.
If the symbol file path is set up correctly, Symbol Loader will find the
correct .PDB file automatically and translate it.

Symbol files need to be translated to .NMS files only once, unless the
module in question changes. Once translated, .NMS files can be loaded
quickly and simply by double-clicking on them in an Explorer window.
SoftICE can also load .NMS files automatically on startup; you can add
files to this list using the Settings application.

Using Windows 9x Symbol (.SYM) Files with SoftICE
The Windows 9x DDK includes symbol information for some system
modules in the form of .SYM files. Use either Symbol Loader or NMSYM
to translate the .SYM files into NMS format and load them into SoftICE
174 Using SoftICE

BETA REVIEW
Chapter 10

Remote Debugging with
SoftICE
� Introduction

� Types of Remote Connections

� DSR Namespace Extension

� Remote Debugging Details

� SIREMOTE Utility (Host Computer)

� NET Command (Target Computer)

Introduction
There may be times during the development process when you need
SoftICE to do more than single-machine debugging, and remote
debugging is required. For example, you may want to debug OpenGL/
Direct 3D programming, Video playback, or a Video Display Driver, and
the machine being debugged is located in another office, at a customers
site, or on the other side of the world. For this type of debugging
situation, SoftICE provides an extensive array of remote debugging
options.

This chapter describes the types of remote connections available and
how to configure SoftICE for each connection type.

Types of Remote Connections
SoftICE offers remote debugging through the following methods:

� Direct Null Modem connection.

� Dial-up Modem.

� Network Interface Card (NIC) interface. With the NIC option, you
have the ability to debug any machine that has an IP address with
the proper configuration and connection.
 175

BETA REVIEW
Through all types of remote connection, the SoftICE screen remains
visible on the target computer, unless one additional step is taken. (For
definition purposes, the target computer is the computer that has the
SoftICE debugger running on it. This is the machine that is being
debugged. The host computer is the machine that runs the SoftICE front
end, siremote.exe.)

To prevent the SoftICE screen from being visible on the target computer,
change the SoftICE configuration option to “Headless Mode” using the
DriverStudio Configuration dialog SoftICE Initialization General Settings
page. Remember that setting this option to “Headless Mode” will
prevent the input devices on the target from functioning.

Alternatively, you could go to the registry and change the entry at
HKLM\System\CurrentControlSet\Services\Ntice titled
“NullVGA.” Set the value of NullVGA to 1, and reboot. This will allow
input on the target computer while preventing the display of the SoftICE
screen.

Which type of remote connection is right for me?

This depends upon many factors, the first of which is location. If the
target computer is at a remote location, your options are either
debugging over a network, or debugging over a dial-up modem. If the
target machine is a local machine (i.e., located in the same office), then
serial debugging or local network (LAN) debugging is most appropriate.

What are the advantages/disadvantages for each type of
connection?

The following table lists the connection advantages and disadvantages .

Table 10-1. Connection Advantages/Disadvantages

Connection Type Advantage Disadvantage

Serial Connection No additional hardware
required other than null
modem cable.
Decent performance.

Machine must be
located within reach of
null modem cable.
Performance at slower
connection speeds.
Not supported in the
DriverStudio Remote
Data extension.
176 Using SoftICE

BETA REVIEW
DSR Namespace Extension
Both DriverStudio and the SoftICE Driver Suite have a desktop feature
called the DriverStudio Remote Data (DSR) namespace extension.

Figure 10-1. DSR Namespace Extension

NIC – Universal
Network Driver

Performance close to that of
single machine debugging.
Ability to debug any machine
at one location.
Ability to debug over the
internet through tcp/ip
protocol (firewall restrictions
and ip limitations apply).
Uses any PCI based NIC card.
Can be used for boot time
debugging.
Full support of the
DriverStudio RemoteData
NameSpace Extension.

Firewall’s get in the
way (can be
circumvented with
VPN, SSH).
Machines may need to
be on same subnet.
Network performance
can decrease if using
the SIVNIC (SoftICE
Virtual NIC) (additional
details below).

NIC – Specialized
Network Drivers

Performance close to that of
single machine debugging.
Does not interfere with
normal network traffic.
Ability to debug any machine
connected to your local
subnet, as well as machines
directly connected to the
Internet.
Full support of the
DriverStudio RemoteData
NameSpace Extension.

Cannot be used to
debug early boot time
drivers.
Requires one of 3
classes of network
cards.

Modem Can connect to any machine
that has a modem.
Firewalls are not a concern.

Slow.
Modem hardware must
be present in both
machines.
Phone line is tied up.

Table 10-1. Connection Advantages/Disadvantages (Continued)

Connection Type Advantage Disadvantage
Chapter 10� Remote Debugging with SoftICE 177

BETA REVIEW
Clicking this feature displays a Remote Data environment similar to that
shown in Figure 10-2.

Figure 10-2. Typical Remote Data Environment for Debugging

This environment allows you to monitor the status of your entire
network from one location. From this one location you can start
SoftICE, change configuration parameters for all tools in the suite,
connect to a remote machine, collect BoundsChecker, TrueCoverage™,
TrueTime®, and Crash Dump files, and finally debug that machine with
SoftICE.

Note: In order to debug a remote machine through the DriverStudio
Remote Data environment, you will need to have either the UND or
the Specialized network drivers installed.
178 Using SoftICE

BETA REVIEW
Remote Target State Icons

In the Remote Data environment, the following icons represent all the
possible remote target states that would be encountered during normal
use. These state icons appear in the leftmost column of a detail view in
the DriverStudio Remote Data folder. They also appear in list, small icon,
and large icon folder views.

DriverStudio Tools: Available
Debugger State: Not available
Operating System State: Running

DriverStudio Tools: Not available
Debugger State: Busy
Debugger Type: SoftICE
Operating System State: Stopped

DriverStudio Tools: Not available
Debugger State: Ready
Debugger Type: SoftICE
Operating System State: Stopped

DriverStudio Tools: Available
Debugger State: Busy
Debugger Type: SoftICE
Operating System State: Running

DriverStudio Tools: Available
Debugger State: Ready
Debugger Type: SoftICE
Operating System State: Running
Chapter 10� Remote Debugging with SoftICE 179

BETA REVIEW
DriverStudio Tools: Not available
Debugger State: Busy
Debugger Type: Visual SoftICE
Operating System State: Stopped

 DriverStudio Tools: Not available
Debugger State: Ready
Debugger Type: Visual SoftICE
Operating System State: Stopped

 DriverStudio Tools: Available
Debugger State: Busy
Debugger Type: Visual SoftICE
Operating System State: Running

 DriverStudio Tools: Available
Debugger State: Ready
Debugger Type: Visual SoftICE
Operating System State: Running

 DriverStudio Tools: Not available
Debugger State: Ready
Operating System State: Stopped

 DriverStudio Tools: Not available
Debugger State: Busy
Operating System State: Stopped

By right-clicking on an icon, you can choose to change the options, start
SoftICE, or reboot the machine. By default, the folder view contains
static information from a snapshot at a given point in time.
180 Using SoftICE

BETA REVIEW
It is possible to refresh the display manually by choosing “View Refresh”
or by specifying an interval of time. To set the time interval, first right-
click on the desktop DSR feature. Then, choose Properties, and select the
Refresh Rate.

Remote Debugging Details
Each type of networking has certain requirements and may require
preparation steps. Please be sure to follow all directions closely.

Specialized Network Drivers

Description

The specialized network drivers offer the best in all-around performance
with minimal intrusion upon the system and network stacks. However,
their limitations may preclude you from using them. The two main
limitations are:

1 They cannot be used for early boot-mode debugging, and

2 You must use one of the three supported classes of network cards.

The specialized network drivers will run on all Windows NT based
operating systems as well as the Win9x based operating systems.

Hardware Requirements

A network card based on any of the three classes of network cards:

� Novell NE2000 series of cards

� 3com 3c90x series of cards, including the 3C905, 3C900, 3C920,
3C921, and all variants of those cards

� Intel E100 series of cards.

Installation

Installation and removal is straight forward.

To install the specialized network drivers:

1 Go to Control Panel.

2 Choose Networking and Dial-up Connections.

3 Right click on Local Area Connection.
Chapter 10� Remote Debugging with SoftICE 181

BETA REVIEW
4 Choose properties.

5 Click on Configure.

6 Click on Driver.

7 Click on Update Driver.

8 Click on Next.

9 Choose Specify a location

10 Browse to your \program files\compuware\driverstudio\softice\net-
work\ folder, and choose the appropriate subfolder. From here,
choose the appropriate.inf file: i.e., nt4, win9x (oemxxxx.inf) or file-
name.inf (for Win2K and later platforms).

If any messages appear regarding “Driver Signing,” these messages
can be safely ignored.

11 After installation is complete, reboot your computer.

Establishing a Connection

Establishing a connection for the specialized network drivers is identical
to that for the Universal Network Driver. (See “Universal Network
Driver” on page 183.)

Removal

Use the following procedure to uninstall the specialized network drivers.

1 Go to Control Panel.

2 Choose Networking and Dial-up Connections.

3 Right-click on Local Area Connection.

4 Choose properties.

5 Click on Configure.

6 Click on Driver.

7 Click on Update Driver.

8 Click on Next.

9 Choose Search for a suitable driver for my device. Follow the
prompts from there.
182 Using SoftICE

BETA REVIEW
Universal Network Driver

Description

The Universal Network Driver (UND) works on all PCI based network
cards for the Windows 2000, Windows XP (and later) Operating Systems.
Two drivers are supplied with the UND. The first driver allows SoftICE to
interact with the networking card. This driver prevents normal network
traffic, e-mail, web browsing, or file sharing to occur on that NIC card.
To get around this limitation we suggest using a second network card
which is dedicated to SoftICE. If this is impractical, we provide an
additional driver called the SoftICE Virtual NIC (SIVNIC). This driver
allows the NIC to be shared between SoftICE and normal Windows
networking.

Note: You will notice a decrease in Windows networking performance
when using the SIVNIC. As such, it is suggested that you install a
second network card that is for the exclusive use of SoftICE.

Hardware Requirements

The only hardware requirement is a PCI-based Network Card on the
target machine. The host can have any type of network card (i.e., most
built-in laptop NIC cards are PCI based).

Note: At this time there is no support for PCMCIA or USB network cards.

Installation

SIDN Installation. Installing the SIDN driver (the base driver used by
SoftICE for debugging) is done through the supplied UNDSETUP.EXE
application which is located in c:\program files\compuware\
driverstudio\softice\network\und. Run this application and
choose the network card that you wish to attach to the UND. Follow the
prompts and reboot your machine.
Chapter 10� Remote Debugging with SoftICE 183

BETA REVIEW
Figure 10-3. SoftICE Network Setup Dialog

SIVNIC Installation. If Windows networking is required on the target
computer (and it is not practical to install a second network card), you
will need to install the SIVNIC.

1 Open the Control Panel and select Add/Remove Hardware.

2 When the wizard opens, select Add/Troubleshoot, click Next, select
Add a new device, then specify that you want to select the device
from a list.

3 When the list of hardware types appears, select Network adapter,
click Have disk, and browse to:
Program Files\Compuware\DriverStudio\SoftICE\Network\UND\VNIC

4 Select sivnic.inf from the list, and continue through the remaining
prompts.

Note: If you run into problems with the VNIC, press Esc during the boot
process when the UND driver prompts you. This will abort the
loading of the UND, as well as the VNIC.
184 Using SoftICE

BETA REVIEW
5 Once the SIVNIC is installed, reboot your computer.

Removal

To uninstall the SIVNIC, simply delete it from the device list, or use the
‘Remove’ option in the Hardware Wizard.

To uninstall the UND, rerun the UNDSETUP.EXE program and choose
the ‘Uninstall’ Option.

Establishing a Network Connection

Note: Presented here are the easiest methods of setting up a connection
between the host and target computers. There are additional
options such as password protecting, IP limiting, gateway and
subnet masks that can be specified. Please refer to the SoftICE
Command Reference for full details. Also, at the end of this chapter
are additional details on the networking commands used with
SoftICE.

TARGET SIDE: On the target computer, you have several options for
starting SoftICE networking. You can:

1 Choose Enable Network Support from the SoftICE Settings-Network
Debugging dialog. The easiest setup option is to accept all the
defaults. When SoftICE is restarted, networking will be enabled with
the options on this screen.

2 From the command line – You can start and stop networking from
the command line within SoftICE. The easiest way to start network-
ing is “net setup dhcp”. To stop networking, use ‘net stop’ and to
restart it ‘net setup dhcp’ or ‘net start’.

3 From the init string – You can specify the same command lines as in
Step 2 above.

HOST SIDE: On the host side, you have two ways to connect.

To start networking on the target computer with the default options:

1 Click on the DriverStudio Remote Data Namespace.

2 Right-click on the computer you wish to debug.

3 Choose Connect to SoftICE.

OR

1 Go to a command prompt.

2 Run the command line equivalent for connecting to a SoftICE target.
Chapter 10� Remote Debugging with SoftICE 185

BETA REVIEW
3 Change to the SoftICE directory.

4 If you started SoftICE debugging on the target with the default
options, you can connect to the machine by typing in the following
command:
siremote [machinename]

Note: If you don’t know the machine name, you can supply the IP address
of the machine, instead. To get the IP address from the machine with
SoftICE, type ‘net status’ from the SoftICE command line and note
the IP address.

If you started network debugging on the SoftICE target with additional
options such as password, or if you need to specify a default gateway or
subnet mask, you will need to use the SIREMOTE command line utility
with the appropriate options. (See The SIREMOTE Utility (Host Computer)
page 189, or type siremote /help on the command line.)

Serial Connection

Description

Serial connection offers the easiest of the remote connection options. Its
performance is quite good at a baud rate of 57600 and near single-
machine performance rate of 115200 baud.

Hardware Requirements

There are two Serial Connection hardware requirements:

1 A serial port dedicated to SoftICE use on both the host and target
computers.

2 A null modem cable.

Note: These cables a readily available at your local computer store. If you
wish to make one yourself, see the appendix for specifics on creating
a null modem cable.

Installation

To install a serial connection, perform the following two steps:

1 Connect the cable between the two machines. You may want to con-
firm that the connection between the two machines is valid by using
any ‘dumb terminal’ program. (HyperTerm ships with Windows.)
186 Using SoftICE

BETA REVIEW
2 Make sure that your connection options are set to the appropriate
settings. If you are running Win2K or WinXP, you will need to use
the SoftICE Settings utility to choose which comport you will be
using for debugging. For the following example, we will be remote
debugging on COM1 at a speed of 115200 baud.

Removal

There are no special requirements to uninstall other than removing the
cable, if so desired. If you are running Win2K or WinXP (and later), you
will want to change Serial Connection in the SoftICE Settings dialog back
to None.

Establishing a Connection

To establish a connection you must first turn on the serial debugging
option within SoftICE on the target computer (as shown in the following
figure).

Figure 10-4. Establishing a Connection

Now, connect to the target from the host computer.
Chapter 10� Remote Debugging with SoftICE 187

BETA REVIEW
TARGET SIDE: Enable serial debugging using one of the following
methods:

� Click on the “Auto Connect (via null modem)” option on the Serial
Debugging page of SoftICE settings. (You will need to reboot your
machine for the changes to take effect.)

OR

� From the SoftICE command line type in “NET COMx baudrate”
(where COMx is one of four possible ports − COM1, COM2, COM3, or
COM4 − and baudrate is one of four speeds − 19200, 38400, 57600, or
115200).

OR

� Add the “NET COMx baudrate” to the init line on the General tab.

HOST SIDE: Enable serial debugging as follows:

1 From the target side, you will need to open up a command prompt
and navigate to the SoftICE directory.

2 Execute the SIREMOTE COMx baudrate (where COMx is the comport
to which the cable is connected and baudrate is your connect speed.)

Modem

Description

You can operate SoftICE remotely over a modem. This is particularly
useful for debugging program faults that occur at an end-user site that
you cannot reproduce locally.

When you operate SoftICE over a modem, the local PC runs both SoftICE
and the application you are debugging. The remote PC behaves as a
‘dumb terminal’ that serves to display the output for your SoftICE session
and to accept keyboard input. SoftICE does not provide mouse support
for the remote computer.

Hardware Requirements

SoftICE has the following hardware requirements for the modems you
use to connect the local and remote systems:

� The modem must accept the industry-standard AT commands such
as ATZ and ATDT, and returns standard result codes such as RING and
CONNECT.
188 Using SoftICE

BETA REVIEW
� The modem must execute a reliable error detecting and correcting
protocol such as V.42 or MNP5. This is important because the
communication protocol used by SoftICE does not include error
detection.

Establishing a Connection

When using SoftICE over a modem, either the local or remote party can
dial to initiate a connection.

Do the following to establish a connection where the local SoftICE user
(you) dials the remote user:

1 Have the remote user run SIREMOTE.EXE.

2 Invoke the DIAL command on your machine.

A connection is established and the remote user is in control of
SoftICE.

Do the following to establish a connection where the remote user dials
the local SoftICE user:

1 Local SoftICE user invokes the ANSWER command to prepare to
answer a call.

2 Remote user dials out using SIREMOTE.EXE..

A connection is established and the remote user is in control of
SoftICE.

Removal

There are no special requirements to uninstall the modem connection.

SIREMOTE Utility (Host Computer)
The support application, siremote.exe, is the front end for all of SoftICE
remote debugging options. When using the DriverStudio Remote Data
namespace extension to connect to SoftICE on a remote target, you are
essentially issuing a blind command of ‘siremote ipaddressoftarget.’

The command line options for siremote.exe vary based upon what type
of connection you are using.

Serial Connection – The only options are COMport and Baudrate. For
example:
Chapter 10� Remote Debugging with SoftICE 189

BETA REVIEW
� Siremote COM1 115200 – This will connect to a remote target with
the hosts com port of COM1 at a speed of 115200.

For network connections, the commands are similar. For example:

� Siremote cartman – This will connect to the remote target named
cartman.

� Siremote 192.168.0.10 secret – This will connect to the target
machine with an IP address of 192.168.0.10 and a password of
‘secret.’

NET Command (Target Computer)
On the target computer, as specified earlier, you can enable remote
debugging either through the user interface, or from the command line
within SoftICE. The easiest method is to use the SoftICE Settings
configuration utility.

Note: Any changes made here will take effect the next time SoftICE starts.
This most often means on the next reboot.

Online Help can be viewed by issuing the ‘NET HELP’ command from
within SoftICE.

:net help

NET SETUP <IP address|DHCP> [MASK=<subnet mask>] [GATEWAY=<IP
address>] [ALLOW=<IP address|ANY>]
[PASSWORD=<password>]

NET START <IP address|DHCP> [MASK=<subnet mask>] [GATEWAY=<IP
address>]

NET COMx [baud-rate]

NET ALLOW <IP address|ANY> [AUTO] [PASSWORD=<password>]

NET PING <IP address>

NET RESET - Reset the current connection

NET DISCONNECT - Reset the current connection

NET STOP - Close connection and disable networking

NET HELP

NET STATUS
190 Using SoftICE

BETA REVIEW
Chapter 11

Customizing SoftICE
� Modifying SoftICE Initialization Settings

� Modifying General Settings

� Pre-Loading Symbols and Source Code

� Pre-Loading Exports

� Serial Debugging

� Configuring Network Debugging

� Modifying Keyboard Mappings

� Working with Persistent Macros

� Setting Troubleshooting Options

� Specifying Advanced Options

Modifying SoftICE Initialization Settings
The SoftICE Configuration settings provides a variety of choices that
determine your debugging environment at initialization. These settings
are categorized as follows:

� General — Provides a variety of useful SoftICE settings, including an
initialization string of commands that automatically executes when
you start SoftICE.

� Symbols — Specifies .NMS symbol files to load at initialization for
debugging device drivers.

� Exports — Specifies DLLs and EXEs from which to load export sym-
bols at initialization.

� Serial Debugging — Specifies remote connection settings. Can select
AutoConnect to automatically initiate a remote connection over a
null modem connection on startup.
 191

BETA REVIEW
� Network Debugging — Use this page to determine how SoftICE
should resolve machine IP addresses on the network. You can also set
which network machines are allowed to connect to your computer.

� Keyboard Mappings — Assigns SoftICE commands to function keys.

� Macro Definitions — Defines your own commands to use within
SoftICE.

� Troubleshooting — Provides solutions to potential problems.

� Advanced — Specifies a command list that cannot be changed from
any other configuration page in this group. These commands are
used mostly for support purposes.

To modify the SoftICE initialization settings, do the following:

1 Start Symbol Loader.

2 From within Symbol Loader, choose SOFTICE INITIALIZATION
SETTINGS... from the Edit menu.

SoftICE displays the following SoftICE Initialization Settings window.

Figure 11-1. SoftICE Initialization Settings
192 Using SoftICE

BETA REVIEW
3 Click on the settings you want to modify.

4 Modify the settings and click OK.

5 Reboot your computer and run SoftICE to apply your changes.

Note: The following sections describe these settings.

Modifying General Settings
Modify the General SoftICE initialization settings as follows.

Initialization

Initialization executes a series of commands when SoftICE initializes. By
default, the Initialization string contains the X (exit) command delimited
with a semi-colon, as follows:

X;

You might want to add additional commands to the initialization string
to change the Ctrl-D hot key sequence that pops up the SoftICE window,
to change SoftICE window sizes, to increase the number of lines
displayed by SoftICE, or to use the Serial command for remote
debugging. If you are debugging a device driver, you might want to
remove the X command (or the semicolon that follows it) to prevent
SoftICE from automatically exiting upon initialization.

To add commands to the initialization string, type one or more
semicolon delimited commands before the X (exit) command.
Commands are processed in the order in which you place them. Thus,
placing a command after the X command, means the command does not
execute until you pop up the SoftICE window. If you type a command
without a semicolon, SoftICE loads the command into the Command
window, but does not execute it.

The following initialization string switches SoftICE to 50-line mode,
changes the hot key sequence to Alt-Z, toggles the Register window on,
and exits from SoftICE:

LINES 50;ALTKEY ALT Z;WR;X;

Note: If you type a string that exceeds the width of the Initialization field,
the field automatically scrolls horizontally to allow you to view the
information as you enter it.
Chapter 11� Customizing SoftICE 193

BETA REVIEW
History Buffer Size

History buffer size determines the size of the SoftICE history buffer. By
default, the History buffer size is 256KB.

The SoftICE history buffer contains all the information displayed in the
Command window. Thus, saving the SoftICE history buffer to a file is
useful for dumping large amounts of data, disassembling code, logging
breakpoints with the BPLOG command, and listing Windows messages
logged by the BMSG command. Refer to Saving the Command Window History
Buffer to a File on page 98.

Trace BufferSize (Windows 9x Only)

This setting determines the size of the trace buffer. The trace buffer can
maintain back trace for the BPR and BPRW commands. By default, Trace
buffer size is set to 8 KB.

Total RAM (Windows 9x Only)

This setting indicates the amount of physical memory installed in your
system. Set Total RAM to a value equal to or greater than to the amount
of memory on your system.

Due to subtle architectural differences between systems, SoftICE cannot
detect the amount of physical memory installed in your computer under
Windows 9x. To map the relationship between linear and physical
memory, SoftICE uses a default value of 128 MB. While this value is
reasonable for most current development systems with 128 MB or less of
physical memory, this does not work correctly on systems with larger
physical address spaces. This is due to the fact that appropriate data
structures for memory pages above 128 MB are not created.

If your system contains less than 128 MB of physical memory, you can
save a small amount of memory by setting this field to the right value.
The memory savings result because fewer data structures are needed to
map physical memory.

Display Diagnostic Messages

Display diagnostic messages determines whether or not SoftICE turns
on verbose mode to display additional information, such as module
loading and unloading, in the Command window. By default, Display
diagnostic messages is turned on.
194 Using SoftICE

BETA REVIEW
Trap NMI

Trap NMI determines whether Non-maskable interrupt (NMI) trapping is
turned on or off. By default, Trap NMI is turned on. NMI trapping is
useful if you have a means of generating an NMI, such as a breakout
switch. Generating an NMI allows you to enter SoftICE even when all
interrupts are disabled. Simple ISA-based breakout switches are available.
Contact Compuware for more information.

Lowercase Disassembly

Lowercase disassembly determines whether or not SoftICE uses
lowercase letters for disassembling instructions. By default, Lowercase
disassembly is turned off.

Support Power Management

SoftICE supports Power Management on the Windows NT family
platforms. (Support power management is the default selection.) This
allows SoftICE to run on a Windows family system that will go into
Standby or Hibernate mode without interfering with hardware
management.

To disable power management support, follow these steps:

1 Run Symbol Loader by selecting Start > Programs > Compuware
DriverStudio > Debug > Symbol Loader on the Windows Start
menu.

2 On the Symbol Loader menu bar, select Edit > SoftICE Initialization
Settings.

3 On the SoftICE Initialization/General page of the Configuration
(Settings) dialog, uncheck the Support power management check
box, and click OK.

Debugging Driver Power Management Code

To debug driver power management code, follow these steps.

1 Configure SoftICE for remote debugging.

2 Configure it to automatically connect for remote debugging.

3 Make sure that the com port used for the connection is configured
properly.

4 Test that the connection can be established.

5 Configure SoftICE to run in Headless Mode.
Chapter 11� Customizing SoftICE 195

BETA REVIEW
6 Reboot and establish the remote connection.

Now SoftICE will be able to popup remotely during power management
cycle.

Headless

SoftICE can be configured so it does not program the video, keyboard
and mouse hardware. This is a useful option when debugging remotely.

To activate this option, go to the Configuration (Settings) dialog and
select SoftICE Initialization. On the General page, select the Headless
(no debugger video, keyboard or mouse) check box.

Individual hardware component programming can be disabled via keys
in the NTICE service key in the registry. Setting the NullKeyboard
REG_DWORD value will configure SoftICE to not program the mouse
and keyboard. Setting the NullVGA REG_DWORD value will configure
SoftICE to not program video.

Enable SoftICE Public Interface

SoftICE can expose a public interface to allow for querying of its presence
from a driver or application. We suggest using a different name, rather
than accepting the default. For additional information, see SoftICE API
Specification on page 269.

Pre-Loading Symbols and Source Code
Use the Symbols initialization settings in conjunction with the Module
Translation settings to pre-load symbols and source code when you start
SoftICE. Pre-loading symbols and source code is useful for debugging
device drivers.

To pre-load symbols or source code, do the following:

1 In the Module Translation settings, select Symbols and source code
if you want your source code loaded in addition to the symbols.

2 Select Package source with symbol table.
196 Using SoftICE

BETA REVIEW
3 In Symbol Loader, choose Translate from the Module menu to
translate the module to a .NMS symbol file.

Tip You can use the
Symbol Loader
command-line utility,
NMSYM, to specify the
output file name.

4 Use the Symbols SoftICE Initialization settings to add your .NMS
symbol file to the Symbols list. The following section describes how
to do this.

Note: Normally, your .NMS symbol file has the same base name as the file
you translated. With Windows 9x, SoftICE can not pre-load files with
long file names, because SoftICE is in real-mode DOS when it
initializes. If your module is a long file name, create the .NMS file,
rename the .NMS file to an eight-character name with the extension
.NMS, and select the renamed .NMS file when you add it to the
symbols list.

Adding Symbol Files to the Symbols List
Tip When you select
PACKAGE SOURCE WITH
SYMBOL TABLE, source
files are part of the
.NMS symbol file. Thus,
there are no restrictions
on source file name
lengths even within
Windows 9x.

From the Symbols selection in the SoftICE Initialization settings, do the
following:

1 Click Add.

SoftICE displays a browse window for you to locate the .NMS files
that contain the symbols and source code you want to pre-load.

2 Select one or more .NMS symbol files and click OK.

3 Every time you modify your source code, retranslate your module to
create a new version of the .NMS symbol file.

Removing Symbols and Source Code Pre-Loading

To prevent SoftICE from pre-loading the symbols or source code
associated with a particular file, select the file in the symbols list and
click Remove.

Reserving Symbol Memory

Symbol buffer size specifies, in kilobytes, the amount of memory to
reserve for storing certain types of debug information (for example, line
number information). With SoftICE for Windows 9x, this memory region
also serves as a buffer for holding .NMS images at boot time. By default,
SoftICE reserves 1024KB for Windows 9x and 512KB for the Windows NT
family.

Typically 512KB is adequate. However, you may need to increase the
Symbol buffer size under the following circumstances:

� If you are debugging large programs, use 1024KB or more.
Chapter 11� Customizing SoftICE 197

BETA REVIEW
� If you are using Windows 9x, and you are loading symbols at boot
time, determine the total size of all the .NMS files that are loaded at
boot time and set the Symbol buffer size to this number.

To determine how much symbol memory is available, use the TABLE
command. Note that most symbol information is stored in dynamically-
allocated memory.

Pre-Loading Exports
Use the Export initialization settings to select files from which SoftICE
can extract export information upon SoftICE initialization. Extracting
export information is useful for debugging DLLs when no debugging
information is available.

Extracting Export Information

To select one or more files from which to extract export information, do
the following:

1 Click Add. SoftICE displays a browse window for you to locate the
files.

2 Select one or more files from which to extract the information and
click OK.

3 SoftICE places the files you selected in the Exports list.

Removing Files from the Exports List

To remove a file from the Exports list, select the file and click Remove.

Serial Debugging
The Serial Debugging page allows you to specify remote connection
settings. You can select AutoConnect to automatically initiate a remote
conection over a null modem on startup.

Note: Information for configuring SoftICE for remote debugging over a
serial cable can be found in the DriverStudio and SoftICE Driver Suite
Installation Guide.
198 Using SoftICE

BETA REVIEW
Configuring Remote Debugging with a Modem

The Remote Debugging settings allow you to define the type of serial
connection, and preset a modem initialization string and phone number
for the DIAL and ANSWER commands. Alternately, you can specify these
parameters directly when using the commands. Refer to your modem
documentation for the exact commands for your particular modem.

Serial Connection (Windows 9x Only)

If you are using SoftICE for Windows 9x, and are debugging a remote
system, choose the communications port on the local system (COM1,
COM2, COM3, or COM4) that you are using for serial communication.
When you are through debugging the remote system, change this setting
to None. By default, Serial connection is set to None.

Note: If you are using SoftICE for the Windows NT family, SoftICE
automatically determines your serial connection.

Telephone Number

Telephone number presets a phone number for the DIAL command, for
example, 717-555-1212.

DIAL Initialization String

DIAL initialization string presets the modem initialization string for the
DIAL ccommand, for example, ATX0.

ANSWER Initialization String

ANSWER initialization string presets the modem initialization string
for the ANSWER command, for example, ATX0.

Configuring Network Debugging
Remote SoftICE allows you to use a standard internet connection to
remotely control SoftICE. This allows greater flexibility and easier access
for debugging functions. Remote SoftICE is supported by Windows 9x
and the Windows NT family.
Chapter 11� Customizing SoftICE 199

BETA REVIEW
Requirements for Remote SoftICE Support

The machine that runs SoftICE is referred to as the target machine.

� The target machine requires a supported ethernet adapter that is con-
nected to the local IP network.

� Currently supported Ethernet adapters are:

� NE2000 and compatibles (use NE2000.SYS)

� 3Com 3C90X (use EL90X.SYS)

� Intel E100 Series Network Adapter

The machine that controls the target machine is called the host
machine.

� The host must be connected to an IP network that is directly or indi-
rectly connected to the IP network of the target machine. The host
must also be running Windows 9x or the Windows NT family.

Setting Up SoftICE for Remote Debugging

Verify the target system is operating properly using a supported adapter
and driver. Replace the adapter driver file (for the Windows NT family,
it’s in the \WINNT\SYSTEM32\DRIVERS directory; for Windows 9x, it’s
in the \WINDOWS\SYSTEM directory) with the file of the same name
from the distribution. Rename the original driver file in case you need it
again.

After replacing the driver file, you will need to reboot the system in order
to use Remote SoftICE.

Enabling Remote Debugging from the Target Side

Once the correct adapter and driver is installed, SoftICE will not allow
remote debugging until it is enabled using the NET commands. The
following commands are available:

� NET START
� NET ALLOW
� NET PING
� NET RESET
� NET STOP
� NET HELP
� NET STATUS
200 Using SoftICE

BETA REVIEW
NET START Command

The NET START command (NET START <IP address|DHCP>
[MASK=<subnet mask>] [GATEWAY=<IP address>]) enables the IP
stack within SoftICE. This command identifies your IP parameters to
SoftICE (IP address, subnet mask, and gateway address). If your local
network supports DHCP (Dynamic Host Configuration Protocol), you
can tell SoftICE to obtain the IP parameters from your network DHCP
server. At this point, the IP stack is running but SoftICE does not allow
remote debugging until you get an IP address.

NET ALLOW Command

The NET ALLOW command (NET ALLOW <IP address|ANY> [AUTO]
[PASSWORD=<password>]) defines which machines can be used to
remotely control SoftICE.

� A remote machine can be defined as a specific IP address, or ANY IP
address.

� If the AUTO option was specified on the NET ALLOW command,
then it is not necessary to issue the NET ALLOW command to enable
a new session after closing the current session.

� Access to SoftICE control can also be qualified with a case-sensitive
password.

When you begin a remote debugging session, SoftICE will pop up on the
target machine, no matter what the current state of the machine.

NET PING Command

The NET PING command (NET PING <IP address>) allows you to do a
basic network connectivity test by sending an ICMP Echo Request (PING)
packet to an IP address. SoftICE sends the request and indicates if it
receives a response within four seconds.

NET RESET Command

The NET RESET command terminates any active remote debugging
session, or cancels the effect of the previous NET ALLOW command. Use
the NET ALLOW command to re-enable remote debugging.
Chapter 11� Customizing SoftICE 201

BETA REVIEW
NET STOP Command

The NET STOP command terminates any active remote debugging
session, or cancels the effect of the previous NET ALLOW command. It
also disables the IP stack and the network adapter.

NET HELP Command

The NET HELP command shows a list of the available network
commands with their respec-tive syntax.

NET STATUS Command

The NET STATUS command shows the current status of the network
adapter (if the NET START command has been issued, this includes the
node address). It also displays the cur-rent IP parameters (IP address,
subnet mask, and gateway) and the status of the remote debugging
connection.

Starting the Remote Debugging Session

Once the target is set up for remote debugging, the remote machine can
issue the SIREMOTE command. Following is the syntax for the
SIREMOTE command.

SIREMOTE <target IP address> [<password>]

The target IP address is the IP address assigned to the ethernet adapter in
the target machine. If the target machine uses a password, specify the
case-sensitive password on the command line.

SIREMOTE tries to create a connection to the target machine. If the target
machine responds, SIREMOTE authenticates the remote machine with
the specified password (blank if no password is being used). If the target
accepts the authentication of the remote machine, Soft-ICE makes the
connection and SIREMOTE obtains the current screen parameters of the
target machine. A console window emulates the SoftICE display, which is
visible on both the target and remote machines.

All standard SoftICE keys react whether they are entered from the remote
or target keyboard. The only exception is that the pop-up key on the
remote machine is always Ctrl-D, even if it is redefined on the target
machine.

To terminate the remote SoftICE session, press Ctrl-Break on the remote
keyboard, or use the NET RESET command from the target machine.
202 Using SoftICE

BETA REVIEW
Modifying Keyboard Mappings
Use Keyboard Mappings to reassign commands to SoftICE function keys
or to specify new ones. You can assign SoftICE commands to any of the
twelve function keys or key combinations involving Shift, Ctrl, or Alt
and a function key.

Note: Keyboard mappings assumes that you are using a ‘QWERTY’
keyboard layout. If you happen to be using a non-QWERTY layout
keyboard, you will need to copy the included keymap.exe utility
program into your \winnt\system32\drivers directory and execute
keymap. If SoftICE is currently running, reboot your system so the
changes can take effect. Running keymap will remap all the
keyboard scan codes to the keyboard layout that is currently being
used by Windows. The one key combination that cannot be
remapped is the popup hotkey. The popup hotkey will always be the
third character from the left on the second row above the space bar.

To patch SoftICE to match the current Windows keymap, issue one of the
commands listed in Table 11-1.

To restore the keyboard mappings to the default USA keymap, issue one
of the commands listed in Table 11-2.

Table 11-1. Match Current Windows Keymap

Platform Command

Windows NT family KEYMAP.EXE NTICE.SYS

Windows 9x KEYMAP.EXE WINICE.EXE

Table 11-2. Restore Keyboard Mappings to Default USA Keymap

Platform Command

Windows NT family KEYMAP.EXE NTICE.SYS /USA

Windows 9x KEYMAP.EXE WINICE.EXE /USA
Chapter 11� Customizing SoftICE 203

BETA REVIEW
Command Syntax

When modifying and creating function keys, you can use any valid
SoftICE command and the characters; caret(^) and semicolon (;). Place a
caret (^) at the beginning of a command to instruct SoftICE to execute
the command without placing it in the command line. The semicolon
behaves like the Enter key and instructs SoftICE to execute the
command. You can place one or more semicolons in the same string.

Modifying Function Keys

SoftICE uses the following abbreviations for the Function, Alt, Ctrl, and
Shift keys:

To modify the SoftICE command assigned to a function key, do the
following:

1 Select the function key you want to modify from the list of keyboard
mappings and click Add.

2 Change the command in the Command field and click OK.

Creating Function Keys

To assign a command to a new function key or function key
combination, do the following:

1 Determine a function key or function key combination to which no
commands are assigned.

2 Click Add.

3 Select the function key you want to use from the Key list.

4 Select a modifier. To assign a command to a function key, click None.
To assign a command to a function key combination, select Shift,
Ctrl, or Alt.

5 Type a command in the Command field and click OK.

Table 11-3. Function Key Abbreviations

Key Abbreviation Example

Function F F1

Alt A AF1

Ctrl C CF1

Shift S SF1
204 Using SoftICE

BETA REVIEW
Deleting Function Keys

To delete a function key assignment, choose the function key and click
Remove.

Restoring Function Keys

The following table lists the default function key assignments.

You can modify individual function key assignments or click Restore
defaults to restore all the keys you edited or removed to their original
settings. Restore defaults does not remove any function keys you create.

Working with Persistent Macros
Macros are user-defined commands that you can use in the same way as
built-in commands. The definition, or body, of a macro consists of a
sequence of command invocations. The allowable set of commands
includes other user-defined macros and command-line arguments.

Table 11-4. Default Function Key Assignments

Key Assignment Key Assignment

F1 H; F12 ^P RET;

F2 ^WR; SF3 ^FORMAT;

F3 ^SRC; AF1 ^WR;

F4 ^RS; AF2 ^WD;

F5 ^X; AF3 ^WC;

F6 ^EC; AF4 ^WW;

F7 ^HERE; AF5 CLS;

F8 ^T; AF11 dd dataaddr->0;

F9 ^BPX; AF12 dd dataaddr->4;

F10 ^P; F12 ^P RET;

F11 ^G @SS:ESP; SF3 ^FORMAT;
Chapter 11� Customizing SoftICE 205

BETA REVIEW
There are two ways to create macros. You can create run-time macros that
exist until you restart SoftICE or persistent macros that are saved in the
initialization file and automatically loaded with SoftICE. This section
describes how to create persistent macros. Refer to Using Run-time Macros
on page 96 for more information about creating run-time Macros.

Creating Persistent Macros

To create a persistent macro, do the following:

1 Click Add.

The Add Macro definition window appears.

2 Type the name of the macro in the Name field.

The macro name may be from three to eight characters long and may
contain any alpha-numeric character or underscore (_). It must
include at least one alphabetic character. A macro-name cannot
duplicate an existing SoftICE command.

3 Type the macro definition in the Definition field.

The definition of a macro is a sequence of SoftICE commands or
other macros separated by semicolons. You are not required to
terminate the final command with a semicolon. Command-line
arguments to the macro can be referenced anywhere in the macro
body with the syntax %<parameter#>, where parameter# is a number
between one and eight.

Note: Although it is possible for a macro to call itself recursively, it is not
particularly useful, because there is no programmatic way to
terminate the macro. If the macro calls itself as the last command of
the macro (tail recursion), the macro executes until you use the ESC
key to terminate it. If the recursive call is not the last command in the
macro, the macro executes 32 times (the nesting limit).

4 Click OK. SoftICE places your persistent macro in the Macro
Definitions list.

Macro Definition Examples

The following table provides examples of legal macro commands.

Table 11-5. Legal Macro Commands

Legal Name Legal Definition Example

Qexp addr explorer; Query %1 Qexp

Qexp 140000
206 Using SoftICE

BETA REVIEW
The following table provides examples of illegal macro commands:

Starting and Stopping Persistent Macros

Type the name of the persistent macro to execute it. To stop the
execution of a persistent macro, press Esc.

Setting the Macro Limit

Use Macro limit to specify the maximum number of macros and
breakpoint actions you can define during a SoftICE session. This number
includes both run-time macros and persistent macros. The default value
of 32 is the minimum value. The maximum value is 256.

1shot bpx %1 do \”bc bpindex\” 1shot eip
or
1shot @esp

ddt dd thread ddt

ddp dd process ddp

thr thread %1 tid thr
or
thr -x

dmyfile macro myfile = \”TABLE %1;file
\%1\”

dmyfile mytable
myfile myfile.c

Table 11-6. Illegal Macro Commands

Illegal Name or
Definition Explanation

Name: DD

Definition: dd
dataaddr

This macro uses the name of a SoftICE command.
SoftICE commands cannot be redefined.

Name: AA

Definition: addr %1

The macro command name is too short. A macro
name must be between 3 and 8 characters long.

Name: tag

Definition: ? *(%2-4)

The macro body references parameter %2
without referencing parameter %1. You cannot
reference parameter %n+1 without referencing
parameter %n.

Table 11-5. Legal Macro Commands (Continued)

Legal Name Legal Definition Example
Chapter 11� Customizing SoftICE 207

BETA REVIEW
Modifying Persistent Macros

To modify a persistent macro, do the following:

1 Select the persistent macro you want to modify and click Add.

2 In the Add macro definitions window, modify the Name and
Definition fields as appropriate, then click OK.

Deleting Persistent Macros

To delete a persistent macro, select the macro you want to delete and
click Remove.

Setting Troubleshooting Options
Tip If you want to
return all the
troubleshooting
settings to their original
states, click RESTORE
DEFAULTS.

The following settings let you troubleshoot SoftICE. Modify these
settings only when directed to do so by Compuware Technical Support or
to remedy the specific situations described within this documentation.
By default, the Troubleshooting settings are all turned off.

Disable Mouse Support

If you are having problems using your mouse in SoftICE, select Disable
mouse support.

Disable Num Lock and Caps Lock Programming
Tip If you’ve turned on
more than one
troubleshooting setting
and you want to turn
all the settings off, use
Restore Defaults
instead of clicking each
individual check box.

If your keyboard locks or behaves erratically when you load SoftICE,
select Disable Num Lock and Caps Lock programming. If this does not
solve the problem and you are using the Windows NT family, try the Do
not patch keyboard driver setting.
208 Using SoftICE

BETA REVIEW
Do Not Patch Keyboard Driver (Windows NT family Only)

If your keyboard locks or behaves erratically when you load SoftICE,
select this setting to prevent SoftICE from patching the keyboard driver.
When you select this option, SoftICE uses an alternate, typically less
robust, method for keyboard handling. If this does not solve the
problem, try the Disable Num Lock and Caps Lock programming
setting.

Disable Mapping of Non-Present Pages

SoftICE attempts to find a page in physical memory even if the page table
entry is marked as not present. Select Disable mapping of non-present
pages to turn off this feature.

Disable Pentium Support

SoftICE automatically detects whether or not you are using a Pentium
processor. If you are using a new CPU with which SoftICE is unfamiliar
and SoftICE mistakenly determines that you are using a Pentium
processor, select this setting to turn off Pentium support.

Disable Thread-Specific Stepping

The P (step over) command is thread sensitive. The return breakpoint set
by the P command triggers only for the thread that was active when the
P command was issued. Note that you would normally want to be in the
same thread you are debugging. To turn off this feature, select Disable
thread-specific stepping.

Specifying Advanced Options
Use the Advanced Options page to specify a list of commands that
cannot be modified from any of the other configuration pages of this
group. The commands found on this page are used mostly for support
purposes.
Chapter 11� Customizing SoftICE 209

BETA REVIEW
210 Using SoftICE

BETA REVIEW
Chapter 12

Exploring Windows NT
� Overview

� Inside the Windows NT Kernel

� Win32 Subsystem

Overview
Without qualification, the Windows NT operating system family
(Windows NT, Windows 2000, and Windows XP) represents an incredible
feat of software engineering and system design. It is hard to imagine a
design of such complexity reaching all of its goals, including three of the
most difficult: portability, reliability, and extensibility, without
compromising either interfaces or implementation. Yet, somehow the
system engineers at Microsoft who design and develop the Windows NT
operating system family have managed to keep each and every
component of these systems smoothly interlocked, not unlike the
precision gears of a finely-made watch. If you are going to write Windows
NT family applications, you should explore what lies beneath your
application code: the operating system. The knowledge you gain from
the time you invest to go beneath your application and into the depths
of the system, will benefit both you and the application or driver that
you are creating.

This chapter provides a quick overview of the more pertinent and
interesting aspects of the basic Windows NT Operating System. By
combining this information with available reference material and a little
practical application using SoftICE, you should be able to gain a basic
understanding of how the components of Windows NT fit together.
 211

BETA REVIEW
For the purposes of this chapter, the use of the term “Windows NT” refers
to all of the 32 bit operating systems, released by Microsoft, where the
kernel is the Windows NT kernel. This includes: Windows NT 4,
Windows NT 4 Embedded, Windows 2000, Windows XP, Windows XP
Embedded, Windows Server 2003, and early pre-releases of Windows
Code-named Longhorn.

Also, for the purposes of this chapter, the use of the term “SoftICE”
applies to the entire family of SoftICE debuggers for the Windows NT
family. The output and Command Line may be slightly different
depending on which version of SoftICE you are using.

Resources for Advanced Debugging

Microsoft provides several resources for advanced Windows NT
debugging including: checked build, the Windows NT DDK, symbol files,
driver verifier, and kernel debugger extensions.

Checked Build

If you are not currently using the checked build (that is, the debug
version) of Windows NT, you are missing a lot of valuable information
and debugging support that the operating system provides. The checked
build contains a wealth of information that is absent from the free build
(retail version). This includes basic debug messages, special flags used by
the kernel components that allow you to trace the system’s operation,
and relatively strict sanity checking of most system API calls. The size
and layout of system data structures as well as the implementation of
system APIs in the checked build are nearly identical to that of the free
build. This allows you to learn and explore using the more verbose
checked build, but still feel completely comfortable if you end up
debugging under the free build.

It is also possible to use individual components from the checked build
on a free build installation. This is often helpful when trying to pin down
a crash or other problem that is happening inside an OS component.
Using checked build components in this way is as simple as copying the
checked build module and its associated debug information file onto the
target system, and loading that debug information into SoftICE.

All in all, if you want to write more robust applications and drivers, use
the checked build.
212 Using SoftICE

BETA REVIEW
Windows NT DDK

The Windows NT DDK contains header files, sample code, on-line help,
and special tools that let you query various kernel components. The most
obvious and useful resource is NTDDK.H. Although there is quite a bit of
information missing from this header file, enough pertinent information
is available to make it worth studying. Besides the basic data structures
needed for device driver development, system data structures are
described (some completely, others briefly, many not at all). There are
also many API prototypes and type enumerations that are useful for both
exploration and development. There are also useful comments about the
system design, as well as restrictions and limitations.

Most of the other header files in the DDK are specific to the more esoteric
aspects of the system, but WDM.H, NTDEF.H, BUGCODES.H, and
NTSTATUS.H are generally useful.

The Windows NT DDK includes a few utilities that are of general interest.
For example, POOLMON.EXE allows you to monitor system pool usage,
and OBJDIR.EXE provides information on the Object Manager hierarchy
and information about a specific object within the hierarchy. SoftICE for
Windows NT provides similar functionality with the OBJDIR, DEVICE,
and DRIVER commands. The utility DRIVERS.EXE, like the SoftICE MOD
command, lists all drivers within the system, including basic information
about the driver. Some versions of the Windows NT DDK include a
significantly more powerful version of the standard PSTAT.EXE utility.
PSTAT is a Win32 console application that provides summary
information on processes and threads. Included with the Win32 SDK and
the Visual C++ compiler, are two utilities worth noting: PVIEW and
SPY++. Both provide information on processes and threads, and SPY++
provides HWND and CLASS information.

The Windows NT DDK also includes help files and reference manuals for
device driver development, as well as sample code. The sample code is
most useful, because it provides you with the information necessary for
creating actual Windows NT device drivers. Simply find something in
your area of interest, build that sample, and step through it with SoftICE.
Chapter 12� Exploring Windows NT 213

BETA REVIEW
Symbol Files
Tip Using symbol files is
probably the most
important aspect of
setting up your
development and
debugging
environment. Select
those components that
are most relevant to
your development
needs, find the
corresponding .DBG or
.PDB file and use
Symbol Loader to
create a .NMS file that
SoftICE can load.

Debug files come in one of two formats. Depending on which version of
the operating system you are using, you may either have .DBG debug
files or .PDB debug files. For operating systems prior to Win2k all OS
symbols were released in the .DBG format. Prior to Win2k-sp3 most OS
files were released in .PDB form with the exception of ntoskrnl and a few
other key system files. For all operating systems after Win2k-sp3, the
debug format has been exclusively .PDB files.

Microsoft provides a separate debug file for every distributed executable
file with both the checked and free builds of the Windows NT operating
system. This includes the systems components that make up the kernel
executive, device drivers, Win32 system DLLs, sub-system processes,
control panel applets, and even accessories and games. The .DBG files
contain basic debug information similar to the PUBLIC definitions of a
.MAP file. Every API and global variable, exported or otherwise, has a
basic definition (for example, name, section and offset). The .PDB-format
symbol files include most information on most structures; the older
.DBG files do not.

Information on locals is not provided in Microsoft’s public symbol files,
but having access to a public definition for each API makes debugging
through system calls a lot easier.

To examine the symbols in the symbol files, issue the SYM command. To
get known types, issue the TYPES command. To get a breakout of a
structure, issue the TYPES structname command. Within SoftICE you can
also cast a block of memory to a structure type by casting an address to a
type, for example:

? (_KTEB)address

or

WATCH (unicode_string)address

Microsoft has introduced a technology called “Symbol Server” that
makes it very easy to get the matching symbols for a given binary.
Symbol Server was introduced with the release of Windows XP because of
the large scale use of Windows Update. The basic mechanism behind
symbol server is that it maintains a collection of debug files that are
stored on a server and are uniquely identifiable to a given binary through
time/date stamps, GUUIDS, files size, and age.
214 Using SoftICE

BETA REVIEW
SoftICE provides a stand alone utility called “Symbol Retriever” that will
get the correct symbols for a binary and optionally translate and load
these symbol files into SoftICE. Microsoft also supplies the server
creation software so that you can setup your own local symbol server for
your own binaries. Symbol Retriever will be able to get symbols from any
symbol server.

Regardless of your specific area of interest, load symbols for the following
key system components. The most important components are listed in
bold typeface.

Table 12-1. Key System Component Symbols

Component Description

NTOSKRNL.EXE The Windows NT Kernel. (Most of the operating system
resides here.)

HAL.DLL The Hardware Abstraction Layer. Important primitives for
NTOSKRNL.

NTDLL.DLL Basic implementation of the Win32 API, and functionality
traditionally attributed to KERNEL. Also the interface
between USER and SYSTEM mode. Essentially replaces
KERNEL32.DLL.

CSRSS.EXE The Win32 subsystem server process. Most subsystem calls
are routed through this process.

WIN32K.SYS A system device driver that minimizes inter-process
communication between applications and CSRSS. Provides
kernel mode equivalents for many of the Win32 APIs.

USER32.DLL Basic implementation of USER functionality. Mostly stubs to
WIN32K.SYS (via LPC to CSRSS).

KERNEL32.DLL. Some basic implementation of traditional KERNEL
functionality, but mostly stubs to NTDLL.DLL.
Chapter 12� Exploring Windows NT 215

BETA REVIEW
Driver Verifier

Microsoft has started adding large numbers of runtime validation checks
to the operating system. The types of checks that it provides varies based
upon the OS, but in general items such as pool corruption, IRQL
violation errors, and low resource simulation. Each release of Windows
NT adds additional options and checks. By default these checks are not
enabled and need to be enabled by running the verifier.exe utility.
From this utility you choose which drivers to analyze and what items to
validate. When Driver Verifier finds an exception case, (for example,
overrunning a buffer) it generates a blue screen with a stop code of
(usually) 0xc4 or 0xc9 and its bugcheck parameters provide additional
information. If you have SoftICE loaded you can debug the case that the
verifier flagged. BoundsChecker, part of the DriverStudio product, also
supplies most of the same features and functionality as driver verifier but
is directly integrated with SoftICE, has a full user mode UI, and will not
cause a crash.

Resources

The following resources provide extensive information for developing
drivers and applications for Windows NT:

� Microsoft Developers Network (MSDN)

MSDN, published quarterly on CD-ROM, contains a wealth of
information and articles on all aspects of programming Microsoft
operating systems. This is one of the only places where you can find
practical information on writing Windows NT device drivers.

� Inside Microsoft Windows 2000 - David A. Solomon, Mark E. Russinovich,
Microsoft Press

Inside Microsoft Windows 2000 provides a high-level view of the design
for the Windows 2000 operating system. Each major sub-system is
thoroughly discussed, and many block diagrams illuminate internal
data structures, policies, and algorithms. Currently, this is the most
definitive work on Windows 2000 operating system internals. You
will gain the most benefit from the information in this book if you
use SoftICE to explore the actual implementation of the system
design, for when you step into OS code with SoftICE, many of the
higher-level relationships become clear.
216 Using SoftICE

BETA REVIEW
� Advanced Windows - Jeffrey Richter, Microsoft Press

Advanced Windows is an excellent resource for the systems programmer
developing Win32 applications and system code. Richter presents
extensive discussions of processes, threads, memory management,
and synchronization objects. Relevant sample code and utilities are
also provided.

� Programming the Windows Driver Model – Walter Oney, Microsoft Press

Programming the Windows Driver Model is an excellent resource and
the definitive resource for the device driver programmer.

� Undocumented Windows 2000 Secrets – Sven B. Schreiber, Addison
Wesley

Undocumented Windows 2000 Secrets focuses on undocumented
interfaces and APIs, and is a good introduction to exploratory
debugging on Windows NT.

Inside the Windows NT Kernel
To gain a basic understanding of Windows NT, look at the platform from
many different perspectives. A general knowledge of how Windows NT
works at different levels enables you to understand the constraints and
assumptions involved in designing other aspects of the operating system.

This section explains the most critical component of the operating
system, the Windows NT Kernel. It describes how Windows NT
configures the core operating system data structures, such as the IDT and
TSS, and how to use corresponding SoftICE commands to illustrate the
Windows NT configuration of the CPU. It also examines a general map of
the Windows NT system memory area, describing important system data
structures and examining the critical role they play within the operating
system.

A majority of the information in this section is based on the
implementation details of the following two modules:

� Hardware Abstraction Layer (HAL.DLL)

HAL is the Windows NT hardware abstraction layer. Its purpose is to
isolate as many hardware platform dependencies as possible into one
module. This makes the Windows NT kernel code highly portable.
Various parts of the kernel use platform dependent code, but only for
performance considerations.
Chapter 12� Exploring Windows NT 217

BETA REVIEW
The primary responsibility of the HAL is to deal with very low-level
hardware control such as Interrupt controller programming,
hardware I/O, and multiprocessor inter-communication. Many of the
HAL routines are dedicated to dealing with specific bus types (PCI,
EISA, ISA) and bus adapter cards. HAL also controls basic fault
handling and interrupt dispatch.

� The Kernel (NTOSKRNL.EXE)

The vast majority of the Windows NT operating system resides in the
Windows NT Kernel, or Kernel Executive. This is the kernel-level
functionality that all other system components, such as the Win32
subsystem, are built upon. The Kernel Executive Services cover a
broad range of functionality, including:

� Memory Management
� Object Management
� Process and Thread creation and manipulation
� Process and Thread scheduling
� Local Procedure Call (LPC) facilities
� Security Management
� Exception handling
� VDM hardware emulation
� Synchronization primitives, such as Semaphores and Mutants
� Run Time Library
� File System
� Power Management
� Multi Processor Synchronization

� I/O subsystems

Managing the Intel Architecture

One of the fundamental requirements of starting a protected-mode
operating system is the setup of CPU architecture, policies, and address
space that the operating system will use. System initialization is
coordinated between NTLDR, NTDETECT, NTOSKRNL, and HAL. Use the
following SoftICE commands to obtain a general idea of how Windows
NT uses the Intel architecture to provide a secure and robust
environment.
218 Using SoftICE

BETA REVIEW
Note: The SoftICE Command Reference provides detailed information about
using each command.

IDT (Interrupt Descriptor Table)

Windows NT creates an IDT for 255 interrupt vectors and maps it into
the system linear address space. The first 48 interrupt vectors are
generally used by the kernel to trap exceptions, but certain vectors
provide operating system services or other special features. Use the
SoftICE IDT command to view the Windows NT Interrupt Descriptor
Table.

Table 12-2. SoftICE Architecture Commands

Command Description

IDT Display information on the Interrupt Descriptor Table

TSS Display information about the Task State Segment

GDT Display information on the Global Descriptor Table

LDT Display information on the Local Descriptor Table (16-bit code
only)

MSR Displays information on the Model Specific Registers

Table 12-3. Interrupt Descriptor Table

Interrupt # Purpose

2 NMI. A Task gate is installed here so the OS has a clean set of
registers, page-tables, and level 0 stack. This enables the
operating system to continue processing long enough to throw
a Blue Screen.

8 Double Fault. A Task gate is installed here so the OS has a clean
set of registers, page-tables, and level 0 stack. This enables the
operating system to continue processing long enough to throw
a Blue Screen.

2A Service to get the current tick count.

2B,2C Direct thread switch services (older versions of Windows NT).

2D Debug service.
Chapter 12� Exploring Windows NT 219

BETA REVIEW
On older machines using the 8259 PIC for controlling interrupts,
interrupt vectors 0x30 - 0x3F are mapped by the primary and secondary
interrupt controllers, so hardware interrupts for IRQ0 through IRQ15 are
vectored through these IDT entries. Most machines produced today use
interrupt controllers based on Intel’s Advanced Programmable Interrupt
Controller (APIC) specification. Such systems are not limited to 15
hardware interrupts. While the IDT itself is the same on these systems,
the mapping of hardware interrupts to interrupt numbers in the IDT is
not. To determine which interrupt number in the IDT the OS has
assigned to a given hardware interrupt, you can use the SoftICE IDT
command, which will read this information out of the APIC. The vector
column of the IDT output will tell you which IDT entry to look at.

In many cases, these hardware interrupt vectors are not hooked, so the
system assigns default stub routines for each one. As devices require the
use of these hardware interrupts, the device driver requests to be
connected. When the interrupt is no longer needed, the device driver
requests to be disconnected.

The default stubs are named KiUnexpectedInterrupt#, where # represents
the unexpected interrupt. To determine which interrupt vector is
assigned to a particular stub, add 0x30 to the UnexpectedInterrupt#. For
example, KiUnexpectedInterrupt2 is actually vectored through IDT
vector 32 (0x30 + 2).

Drivers may install and uninstall interrupt handlers as necessary, using
IoConnectInterrrupt and IoDisconnectInterrupt. These routines create
special thunk objects, allocated from the Non-Pageable Pool, which
contain data and code to manage simultaneous use of the same interrupt
handler by one or more drivers.

2E Execute System Service. Prior to Windows XP, Windows used INT
2E to transition from user to system mode. Since Windows XP,
this mechanism has been replaced on newer processors with the
faster SYSENTER/SYSEXIT instructions, but the old mechanism is
still in place. For more information, refer to the NTCALL
command in the SoftICE Command Reference.

30-37 Primary Interrupt Controller (IRQ0-IRQ7) on older PIC-based
machines

30 - HAL clock interrupt (IRQ0) on older PIC-based machines.

38-3F Secondary Interrupt Controller (IRQ8-IRQ15) on older PIC-based
machines.

Table 12-3. Interrupt Descriptor Table (Continued)

Interrupt # Purpose
220 Using SoftICE

BETA REVIEW
TSS (Task State Segment)

The purpose of the TSS is to save the state of the processor during task or
context switches. For performance reasons, Windows NT does not use
this architectural feature and maintains only one TSS per processor. As
noted in the previous section on the Windows NT IDT, other TSS data
types exist, but are only used during exceptional conditions to ensure
that the system will not spontaneously reboot before Windows NT can
properly crash itself. Use the SoftICE TSS command to view the current
TSS.

The TSS contains the offset from the base of the TSS to the start of the I/O
bitmap. The I/O bitmap determines which ports, if any, the code
executing at Ring 3 can access directly. When executing a Win32
application, the TSS contains an invalid offset (it points beyond the
segment limit of the TSS). This forces the operating system to trap all
direct I/O.

Inside the actual TSS data structure, the only field of real interest is the
address of the Level 0 stack. This is the stack that is used when the CPU
transitions from user mode to system mode.

GDT (Global Descriptor Table)

Windows NT is a flat, 32-bit architecture. Thus while it still needs to use
selectors, it uses them minimally. Most Win32 applications and drivers
are completely unaware that selectors even exist.

The following is abbreviated output from the SoftICE GDT command
that shows the selectors in the Global Descriptor Table.

GDTbase=80036000 Limit=03FF

0008 Code32 Base=00000000 Lim=FFFFFFFF DPL=0 P RE

0010 Data32 Base=00000000 Lim=FFFFFFFF DPL=0 P RW

001B Code32 Base=00000000 Lim=FFFFFFFF DPL=3 P RE

0023 Data32 Base=00000000 Lim=FFFFFFFF DPL=3 P RW

0028 TSS32 Base=8000B000 Lim=000020AB DPL=0 P B

0030 Data32 Base=FFDFF000 Lim=00001FFF DPL=0 P RW

003B Data32 Base=7FFDE000 Lim=00000FFF DPL=3 P RW

0043 Data16 Base=00000400 Lim=0000FFFF DPL=3 P RW

0048 LDT Base=E156C000 Lim=0000FFEF DPL=0 P

0050 TSS32 Base=80143FE0 Lim=00000068 DPL=0 P

0058 TSS32 Base=80144048 Lim=00000068 DPL=0 P
Chapter 12� Exploring Windows NT 221

BETA REVIEW
Note that the first four selectors address the entire 4GB linear address
range. These are flat selectors that Win32 applications and drivers use.
The first two selectors have a DPL of zero and are used by device drivers
and system components to map system code, data, and stacks. The
selectors 1B and 23 are for Win32 applications and map user level code,
data, and stacks. These selectors are constant values and the Windows NT
system code makes frequent references to them using their literal values.

The selector value 30h addresses the Kernel Processor Control Region and
is usually mapped at a base address of 0xFFDFF000. When executing
system code, this selector is stored in the FS segment register. Among its
many other purposes, the Processor Control Region maintains the
current kernel mode exception frame at offset 0.

Similarly, the selector value 3Bh is a user-mode selector that maps the
current user thread environment block (UTEB). This selector value is
stored in the FS segment register when executing user level code and has
the current user-mode exception frame at offset 0. The base address of
this selector varies depending on which user-mode thread is running.
When a thread switch occurs, the base address of this GDT selector entry
is updated to reflect the current UTEB.

Selector value 48h is an LDT type selector and is only used for VDM
processes. Win32 applications and drivers do not use LDT selectors.
When a Win32 process is active, the Intel CPU’s LDT register is NULL. In
this case, the SoftICE LDT command gives you a No LDT error message.
When a VDM or 16-bit WOW process is active, a valid LDT selector is set,
and it comes from this GDT selector. During a process context switch,
LDT selector information within the kernel process environment block
(KPEB) is poked into this selector to set the appropriate base address and
limit.

LDT (Local Descriptor Table)

Under Windows NT, Local Descriptor Tables are per process data
structures and are only used for Virtual DOS Machines (VDM). The 16-bit
WOW box (Windows On Windows) is executed within a NTVDM process
and has an LDT. Like Windows 3.1, the LDT for a WOW contains the
selectors for every 16-bit protected mode code and data segment for each
16-bit application or DLL that is loaded. It also contains the selectors for
each task database, module database, local heaps, global allocations, and
all USER and GDI objects that require the creation of a selector.
222 Using SoftICE

BETA REVIEW
Under a WOW, because the number of selectors needed can be quite
large, a full LDT is created with a majority of the entries initially reserved.
These reserved selectors are allocated as needed. Under a non-WOW
VDM, the size of the LDT is significantly smaller.

Windows NT System Memory Map

Windows NT reserves the upper 2GB of the linear address space for
system use. The address range 0x80000000 - 0xFFFFFFFF maps system
components such as device drivers, system tables, system memory pools,
and system data structures such as threads and processes. (It is also
possible to change this behavior by adding the /3gb switch to your
boot.ini and have 3 gigs available to user mode and 1GB available to
the kernel.) While you cannot create an exact map of the Windows NT
system memory space, you can categorize areas that are set aside for
specific usage. The following System Memory Map diagram gives you a
rough idea of where operating system information is located. Remember
that a majority of these system areas could be mapped anywhere within
the system address space, but are generally in the address ranges shown.

� System Code area

Boot drivers and the NTOSKRNL and HAL components are loaded in
the System Code address space. Non-boot drivers are loaded in the
NonPaged system address space near the top of the linear address
space. You can use the SoftICE MOD and MAP32 commands to
examine the base address and extents of boot drivers loaded in this
memory area. This is also where the TSS, IDT, and GDT system data
structures are mapped.

Note: LDT data structures are created from the Paged Pool area.

� System View area

The System View address space is symbolically referenced, but does
not ever seem to be mapped under Windows NT 3.51. Under newer
versions of Windows NT, the System View address space maps the
global tables for GDI and USER objects. You can use the SoftICE
OBJTAB command to view information about the USER object table.
Chapter 12� Exploring Windows NT 223

BETA REVIEW
� System Tables Area

This region of linear memory maps process page tables and related
data structures. This is one of the few areas of system memory that is
not truly global, in that each process has unique page tables. When
Windows NT executes a process context switch, the physical address
of the process Page Directory is extracted from the kernel process
environment block (KPEB) and loaded into the CR3 register. This
causes the process page tables to be mapped in this memory area.
Although the linear addresses remain the same, the physical memory
used to back this area contains process-specific values. In SoftICE
terminology, the Page Directory is essentially an Address Context.
When you use the SoftICE ADDR command to change to a specific
process context, you are loading the Page Directory information for this
process.

To manage the mapping of linear memory to physical memory,
Windows NT reserves a 4MB region of the system linear address space
for Page Tables. This 4MB region represents the entire range of
memory necessary to fully define a Page Directory and complete set
of page tables. The need for a 4MB region can be calculated given
that there is one Page Directory structure which contains entries for
1024 Page Tables. To map a 4GB linear address space, each Page Table
must map a 4MB region of linear address space (4GB /1024). Each
Page Table is a multiple of the CPU page size (which is 4KB under
Windows NT), so multiplying 1024 by 4096 (the page size) yields the
expected 4MB value. Thus an operating system that uses paging and
a 4KB page size requires 4MB of memory to map the entire address
space. Windows NT, Windows 95 and Windows 98 take the simple
and efficient approach of using a contiguous region of linear memory
for this purpose.

The diagram on the next page shows the system memory map for
Windows NT.
224 Using SoftICE

BETA REVIEW
Figure 12-1. Windows NT System Memory Map
Chapter 12� Exploring Windows NT 225

BETA REVIEW
In this design, the Page Directory is actually performing two
functions. In addition to being the Page Directory, representing 4GB,
it also serves as a page table, representing 4MB in the address range of

0xC0000000 - 0xC03FFFFF. The Page Directory maps the 4MB region
where the process page tables are mapped (0xC0000000-
0xC03FFFFF), so the Page Directory entry that maps this area must
point to itself. If you use the SoftICE PAGE command, the physical
address of the Page Directory displayed at the top of the command
output matches the physical address for the entry that maps the
0xC0000000 - 0xC03FFFFF memory range. If you use the SoftICE
ADDR command to obtain the CR3 (the CR3 register contains the
physical address of the Page Directory) value for the current process
and supply this value as input to the SoftICE PHYS command, all the
linear addresses that are mapped to the physical address of the Page
Directory are displayed. One of the addresses is 0xC0300000.

The following examples illustrates how all these values interrelate.
Important values are show in bold typeface.

� Use the ADDR command to obtain the physical address of the
Page Directory (CR3).

� Use the physical address as input to the PHYS command to
obtain all linear addresses that map to that physical page (one
physical page may be mapped to more than one linear address,
and one linear address may be mapped to more than one page).

:addr

CR3 LDT Base:Limit KPEB Addr PID Name

00030000 FF116020 0002 System

0115A000 FF0AAA80 0051 RpcSs

0073B000 FF083020 004E nddeagnt

00653000 E13BB000:0C3F FF080020 0061 ntvdm

00AEE000 FF07A600 0069 Explorer

01084000 FF06ECA0 0077 FINDFAST

010E9000 FF06CDE0 007B MSOFFICE

*01F6E000 FF088C60 006A WINWORD

01E0A000 FF09CCA0 008B 4NT

017D3000 E1541000:018F FF09C560 006D ntvdm

00030000 80140BA0 0000 Idle
226 Using SoftICE

BETA REVIEW
:phys 1F6E000
C0300000

� Use the linear address (C0300000) and run it through the PAGE
command to verify the physical page for that linear address.

:page C0300000
Linear Physical Attributes
C0300000 01F6E000 P D A S RW

� Use the PAGE command without any parameters to view the
mapping of the entire linear address range. This is useful for
obtaining the physical address of the Page Directory and
verifying that the operating system page tables are mapped at
linear address 0xC0000000. The output for this command is
abbreviated.

System Page Table Entries and ProtoPTEs

The acronym, PTE, which appears in various places on the system map,
stands for Page Table Entry. A Page Table Entry is one of the 1024 entries
that is contained in a Page Table. Each PTE describes one page of
memory, including its physical address and attributes. Because Windows
NT also runs on non-Intel platforms, and because the operating system
may need to extend the types of page-level protection beyond what any
particular CPU may provide, Windows NT virtualizes the CPU PTE with
what is referred to as a ProtoPTE. The ProtoPTE is similar to the Intel
Architecture PTE, but includes attributes that are not provided by the
Intel PTE.

:page

Page Directory Physical=01F6E000

Physical Attributes Linear Address Range

01358000 P A S RW A0000000 - A03FFFFF

017F0000 P A S RW A0400000 - A07FFFFF

01727000 P A S RW A0800000 - A0BFFFFF

01F6E000 P A S RW C0000000 - C03FFFFF

0066F000 P A S RW C0400000 - C07FFFFF

00041000 P A S RW C0C00000 - C0FFFFFF

00042000 P A S RW C1000000 - C13FFFFF
Chapter 12� Exploring Windows NT 227

BETA REVIEW
By overloading the meaning of an attribute bit within an Intel PTE, the
operating system can gain control on a page fault, and examine the
extended attributes of the corresponding ProtoPTE to determine why the
operating system requested that the fault occur. Throughout NTOSKRNL,
manipulations are performed on the ProtoPTE abstraction, and translated
to the actual CPU PTE type. Note that the operating system also
compares the ProtoPTE to its corresponding CPU PTE to ensure their
consistency. This effectively prevents an application or device driver
from directly manipulating the page table entries.

� Paged Pool Area: The Paged Pool system memory area is where
ntoskrnl!ExAllocatePool and its related functions allocate memory
that can be paged to disk. This is in direct contrast to the Non-Paged
pool area. Non-Paged pool allocations are never paged to disk and are
designed for routines such as Interrupt Handlers that need high
performance or need a guarantee that a piece of information is
always available for use.

Windows NT makes extensive use of the Paged pools, as this is where
most operating system objects are created. Note that the starting
address and the size and number of paged pools is determined
dynamically during system initialization. Only use the addresses
presented here as a guideline. For the actual addresses, load the
symbols for NTOSKRNL and examine the appropriate variables that
describe the paged pool configuration. (To see several of them, use
the SoftICE SYM command with the Parameter “MmPaged*”.)

Although there is one Paged Pool area, there are multiple paged
pools. The number is determined during system initialization. Paged
pool allocations occur with relatively high frequency and those
accesses must be thread safe, so having one data structure which
must be owned exclusively by one thread during memory allocation
or deallocation creates a bottleneck. To avoid potential traffic jams
and reduced system performance, multiple pool descriptors are
created, each with its own private data structures, including an
executive spinlock for thread synchronization. Thus, the more paged
pools created, the more threads that can perform paged pool
allocations simultaneously, increasing the throughput of the system.
An important design note, in case you plan on using similar
techniques in your driver or application, is that the overhead for a
Paged Pool (or Non-Paged Pool) descriptor is very minimal. Thus its
practical for four or five of them to exist. However, determine that an
actual bottleneck exists before creating elaborate schemes to solve a
non-existent problem.
228 Using SoftICE

BETA REVIEW
� Non-Paged System Area: This linear region is intended for system
components and data structures that need to be present in memory
at all times. This includes non-boot drivers, kernel mode thread
stacks, two Non-Paged memory pools, and the Page Frame Database.
Although it is contradictory to say that items in the Non-Paged
System area can become not present; the truth is that they can be.
Specifically, kernel thread stacks and process address spaces can be
made not present, and often are.

The Non-Paged pool is similar to the Paged Pool with the exception
that objects created in the Non-Paged pool are not discarded from
memory for any reason. The Non-Paged pool is used to allocate key
system data structures such as kernel process and thread
environment blocks. There is a second Non-Paged pool used for
memory allocations that must succeed. At system initialization,
NTOSKRNL reserves a small amount of physical memory for critical
allocations, and saves this memory for use by the must succeed pool.
The size of an allocation from the must succeed pool must be less
than one page (4KB). If the must succeed allocation cannot be
satisfied, or the requested allocation size is larger than 4KB, the
system throws a Blue Screen.

� Processor Control Region: At the high end of the system memory
area is the Processor Control Region. Here, Windows NT maintains
Processor Control Block (PRCB) data structures for each processor
within the system and a global data structure, the Processor Control
Region that reflects the current state of the system. The Processor
Control Region (PCR) contains key pieces of information about the
current state of the system, such as the currently running kernel
thread; the current interrupt request level (IRQL); the current
exception frame; base addresses of the IDT, TSS, and GDT; and kernel
thread stack pointers. Small portions of the PCR and PCRB data
structures are documented in NTDDK.H.

In many cases, device driver writers need to know the current IRQL at
which they are executing. Although you could look inside the PCR
data structure at offset 0x24, it is simpler to use the SoftICE intrinsic
function, IRQL, as follows:

? IRQL
<uchar> = 0x2, 2

The most common piece of data accessed from the PCRB is the
current kernel thread pointer. This is at offset 4 within the PCRB, but
is generally referenced through the PCR at offset 0x124. This works
because the PCRB is nested within the PCR at offset 0x120. Code that
accesses the current thread is usually of the form:
Chapter 12� Exploring Windows NT 229

BETA REVIEW
mov reg, FS:[124].

Remember that while executing in system mode, the FS register is set
to a GDT selector whose base address points to the beginning of the
PCR. SoftICE makes it much easier to get the current thread pointer
or thread id by using the intrinsic functions thread or tid:

? thread
<void *> = 0xFF088E90
? tid
<ushort> = 0x0071

For more extensive information on the current thread use the
following commands:

The current process is not stored as part of the PCR or PCRB.
Windows NT references the current process through the current
thread. Code such as the following obtains the current process
pointer:

:thread tid

TID Krnl TEB StackBtm StkTop StackPtr User TEB Process(Id)

0071 FF0889E0 FC42A000 FC430000 FC42FE5C 7FFDE000 WINWORD(6A)

:thread thread

TID Krnl TEB StackBtm StkTop StackPtr User TEB Process(Id)

0071 FF0889E0 FC42A000 FC430000 FC42FE5C 7FFDE000 WINWORD(6A)

mov eax, FS:[124] ; get the current thread (KTEB)

mov esi, [eax+40h] ; get the threads process pointer (KPEB)
230 Using SoftICE

BETA REVIEW
Win32 Subsystem

Inside CSRSS

The Win32 subsystem server process CSRSS implements the Win32 API.
The Win32 API provides many different types of service, including
functionality traditionally attributed to the original Windows
components KERNEL, USER, and GDI. Although these standard modules
exist in the form of 32-bit DLLs under Windows NT, most of the core
functionality is actually implemented in WINSRV.DLL and WIN32K.SYS
within the CSRSS process. Calls that are traditionally associated with one
of the standard Windows components are typically implemented as stubs
that call other modules, for example, NTDLL.DLL, or use inter-process
communication to CSRSS for servicing.

Most USER and GDI API calls have their functionality implemented in
USER32 and GDI32 modules that are loaded into your application’s
address space. This allows the most common services to execute as simple
function calls. The WIN32K.SYS module allows USER and GDI services to
execute more efficiently through a simple transition from user to system
mode. Depending on which processor and OS you are using, this can
occur through a SYSENTER instruction or through an int 2e. Having
WIN32K.SYS as a device driver that provides application services allows
Windows NT to maintain a high level of encapsulation and robustness,
while providing a much more efficient pseudo client-server service
architecture.

Although CSRSS executes as a separate process, it still has a big impact on
the address space of every Win32 application. If you use the SoftICE
HEAP32 command on your process, you will notice at least two heaps
that your application did not specifically create, but were created on its
behalf. The first is the default process heap that was created during
process initialization. The second is a heap specifically created by CSRSS.
There may be other heaps in your application address space that were not
created by your process. These heaps are generally located very high in
the user-mode address space and appear if you use the SoftICE QUERY
command, but do not appear in the output of the HEAP32 command.
The reason for this is quite simple: for each user-mode process, a list of
process heaps is maintained and the SoftICE HEAP32 command uses this
list to enumerate the heaps for a process. If the heap was not created by
or on behalf of your application, it does not appear in the process heap
list. The SoftICE QUERY command traverses the user-mode address space
for your application, using the SoftICE WHAT engine to identify regions
of memory that are mapped.
Chapter 12� Exploring Windows NT 231

BETA REVIEW
When the WHAT engine encounters a region whose base address is
equivalent to a heap that is listed as part of the process heap list, it is
identified as a heap. If the WHAT engine cannot identify a region as a
heap in this manner, it probes the data area looking for key signatures
that identify the area as heap or heap segment.

Heaps that exist in the process address space, but that are not
enumerated in the process heap list, were mapped into the process
address space by another process. In most cases, this mapping is done by
CSRSS. During subsystem initialization, CSRSS creates a heap at a well-
known base address. When new processes are created, this heap is
mapped into their address spaces at the same well-known base address.
Theoretically, mapping the heap of one process at the same base address
of another process allows both processes to use that heap. In practice,
there are issues that might prevent this from working under all
circumstances – synchronization being one such issue. Note that under
newer versions of Windows NT, more than one heap may be mapped
into the process address space, and those heaps may be mapped at
different base addresses in different processes. The SoftICE QUERY
command notes this condition in its output. Also, new versions of the
operating system use heaps that are created in the system address space,
and these heaps are sometimes mapped into the user address space.
Windows NT allows the creation of heaps within the system address
space using APIs exported from NTOSKRNL. These APIs are similar to the
same APIs exported from the user-mode module, NTDLL.DLL.

USER and GDI Objects

The protected Win32 subsystem process, CSRSS, provides a majority of
the traditional USER functionality. APIs and data structures provided by
the WINSRV.DLL and WIN32K.SYS modules manage window classes and
window data structures, as well as many other USER data types.

The following USER object types exist. Object type IDs are listed in
parentheses.

FREE (0) Object Entry is unused/invalid.

HWND (1) Window Objects.

MENU (2) Windows MENU object.

ICON/CURSOR (3) Windows ICON or CURSOR object.

DEFERWINDOWPOS (4) Object returned by the
BeginDeferWindowPosition API.

HOOK (5) Windows Hook thunk.
232 Using SoftICE

BETA REVIEW
Rather than maintaining per-process data structures for USER and GDI
object types, CSRSS maintains a master handle table for all processes. The
USER and GDI objects are segregated into two different tables that have
the same basic structure and semantics. WINSRV provides distinct
Handle Manager APIs for managing the two different tables. You can
identify the handle manager API names by the HM prefix in front of the
API name, and the GDI specific routines by the “g” appended to this
prefix. The routine HMAllocObject creates USER object types, while
HmgAlloc is a GDI object type API that creates GDI object types.

The management of USER and GDI handles is relatively straightforward,
and its design is a good example of how to implement basic management
of abstract object types. Specifically, this API uses a simple, but robust,
technique for creating unique handles and managing reference counts.
The design also provides for handle opaqueness which prevents
applications, including USER32 and CSRSS, from directly manipulating
the objects outside the handle manager. Preventing clients, including
itself, from directly manipulating the object data allows the handle
manager to ensure that reference counts and synchronization issues are
managed correctly.

The master object tables maintained by the Handle Manager are
growable arrays of fixed size entries. The following table lists the fields for
an object table. Only columns with bold field headers are part of the
entry. The columns with italicized headers are for illustration only.

THREADINFO (6) CSRSS Client Thread Instance Data.

CLIPBOARD FORMAT (7) Registered Clipboard Formats.

CPD (8) Call Procedure Data thunk.

ACCELERATOR (9) Accelerator Table Object.

WINDOW STATION (0xD)

KEYBOARD LAYOUT (0xE) Object to describe a keyboard layout.

DDEOBJECT (0xA) DDE Objects such as strings.

Entry
Object
Pointer
(DWORD)

Owner
(DWORD)

Type
(BYTE)

Flags
(BYTE)

Instance
Count
(WORD)

Handle Value

0 NULL NULL FREE (0) 00 0001 00010000

1 HEAP * HEAP * DESKTOP (0C) 00 0001 00010001

2 HEAP * HEAP * HWND (04) 01 0003 00030002
Chapter 12� Exploring Windows NT 233

BETA REVIEW
The Object Pointer field points to the actual object data. This pointer is
generally from one of the CSRSS heaps or the Paged Pool. The type field
is the enumeration for the object type. The Instance Count field creates
unique handles. The Flags field is used by the Handle Manager to note
special conditions, such as when a thread locks an object for exclusive
use.

How Handle Values Are Created

Initially, all object table Instance counts are set to 1. When a new Object
Entry is allocated, the Instance Count is combined with the table index
to create a unique handle value. When references are made to an object,
the table entry portion of the handle is extracted and used to index into
the table. As part of the handle validation, the instance count is extracted
from the table entry and compared to the handle being validated. If the
instance count does not match the table entry instance count, the
handle is bogus. The following example illustrates these concepts:

To create an object handle from an object table entry:

Object Handle = Table Entry Index + (InstanceCount << 16);

To validate an object handle:

ObjectTable [LOWORD(handle)]. InstanceCount ==
HIWORD(handle);

When an object is destroyed, all fields are reinitialized to zero and the
current Instance Count for that entry is incremented by one. Thus, when
the object table entry is reused, it generates a different handle value for
the new object.

Note: The actual object type is not part of the object handle value. This
means that given an object handle, an application cannot directly
determine its type. It is necessary to dereference the object table
entry to obtain the object type.

This technique for creating unique handle values is simple and efficient,
and makes validation trivial. Imagine the case where a process creates a
window and obtains a handle to that window. During subsequent
program execution, the process destroys the window but retains the
handle value. If the process uses the handle after the window is
destroyed, the handle value is invalid and the type it points to has an
object type of FREE. This condition is caught, and the program is not be
able to use the handle successfully. In the meantime, if another process
creates a new object, it is likely that the entry originally for the now
destroyed window will be reused. If the original program uses the invalid
window handle, the handle instance counts no longer match, and the
validation fails.
234 Using SoftICE

BETA REVIEW
Object tables are not process specific, so USER and GDI object handles
values are not unique to a specific process. HWND handles are unique
across the entire Win32 subsystem. One process never has an HWND
handle value that is duplicated in any other process.

USER Object Table

Use the SoftICE OBJTAB command to display all the object entries within
the USER object table. The OBJTAB command is relatively flexible,
allowing a handle or table entry index to be specified. It also supports the
display of objects by type using abbreviations for the object type names.
To see a list of object type names that the OBJTAB command can use,
specify the -H option on the OBJTAB command line.

The Object Pointer field can reference the object specific data for an
object table entry. All objects have a generic header that is maintained by
the object manager, which includes the object handle value and a thread
reference count. Most object types also contain a pointer to a desktop
object and/or a pointer to its owner.

The following example shows an object table entry for a window handle
and a data dump of the object header maintained by the handle
manager. Key information from the command output is listed in bold.

1 Use the SoftICE OBJTAB command to find an arbitrary window han-
dle and obtain the object pointer. In this example, the handle value is
0x1000C and the owner field is 0xE12E7008:

2 Dumping 0x20 bytes of the object data reveals the following:

The value 0x1001C, at offset 0, is the object handle value. The field at
offset 4, which contains the value six (6), is the object reference
count. The value at offset 0x0C, of 0xFF0E45D8, is a pointer to the
window’s desktop object.

:objtab hwnd

Object Type Id Handle Owner Flags

E12E9EA8 Hwnd 01 0001001C E12E7008 00

:dd e12e9ea8 l 20

0010:E12E9EA8 0001001C 00000006 00000000 FF0E45D8

0010:E12E9EB8 00000000 E12E7008 00000000 00000000
Chapter 12� Exploring Windows NT 235

BETA REVIEW
3 Verify this using the SoftICE WHAT command as follows:

:what ff0e45d8
The value FF0E45D8 is (a) Kernel Desktop object (handle=0068) for
winlogon(21)

The value at offset 0x14, of 0xE12E7008, is the same value that was
in the object entry owner field.

4 Dumping 0x20 bytes at the address of the owner data reveals the fol-
lowing:

5 The value (0x1001B) at offset 0 of the owner data looks like an object
handle, but it is a thread information object. The following example
uses the OBJTAB command with 0x1001B as the parameter to show
the type for the owner data.

Monitoring USER Object Creation

If you do a considerable amount of Win32 application development, the
HMAllocObject API is a convenient place to monitor creation of object
types such as windows. Use the SoftICE MACRO command to create a
breakpoint template that can trap creation of specific object types as
follows:

:MACRO obx = “bpx winsrv!HMAllocObject if (esp->c == %1)”

The HMAllocObject API is implemented in WINSRV.DLL and the object
type being created is the third parameter, which translates to Dword ptr
esp [0Ch]. The syntax “esp->c” dereferences the requested object type,
and is equivalent to *(esp+c). The “%1” portion of the conditional
expression is a place holder for argument replacement. When you
execute the OBX macro, the argument provided is inserted into the
macro stream at the “%1”:

:OBX 1 -> bpx winsrv!HMAllocObject if (esp->c == 1)

When this breakpoint is instantiated, it traps all calls to HMAllocObject
that creates window object types.

:dd e12e7008 l 20

0010:E12E7008 0001001B 00000000 00000000 E12E9C34

0010:E12E7018 E17DB714 00000000 00000000 00000000

:objtab 1001b

Object Type Id Handle Owner Flags

E12E7008 Thread Info 06 0001001B 00000000 00
236 Using SoftICE

BETA REVIEW
Process Address Space

The address space for a user-mode process is mapped into the lower 2GB
of linear memory at addresses 0x00000000 - 0x7FFFFFFF. The upper 2GB
of linear memory is reserved for the operating system kernel and device
drivers.

In general, each Win32 application’s process address space has the
following regions of linear memory mapped for the corresponding
purpose.

Under Windows NT, the lowest and highest 64KB regions in the user-
mode address space are reserved and are never mapped to physical
memory. The 64KB at the bottom of the linear address space is designed
to help catch writes through NULL pointers.

The default load address for processes under Windows NT is 0x10000.
Processes often change their load address to a different base address.
Applications that were designed to run on Windows 95 and Windows 98
have a default load address of 0x400000. Use the linker or the REBASE
utility to set the default load address of a DLL or EXE.

The linear range at 0x70000000 is an approximation of the area where
Win32 subsystem modules load. Use the SoftICE MOD, MAP32, or
QUERY commands to obtain information on modules loaded in this
range.

Table 12-4. Process Address Space

Linear Address Range Purpose

0x00000000 - 0x0000FFFF Protected region. Useful for detecting
NULL pointer writes.

0x00010000 Default load address for Win32 processes.

0x70000000 - 0x78000000 Typical range for Win32 subsystem DLLs
to be loaded.

0x7FFB0000 - 0x7FFD3FFF ANSI and OEM code pages. Unicode
translation table(s).

0x7FFDE000 - 0x7FFDEFFF Primary user-mode thread environment
block.

0x7FFDF000 - 0x7FFDFFFF User-mode process environment block
(UPEB).

0x7FFE0000 - 0x7FFE0FFF Message queue region.

0x7FFFF000 - 0x7FFFFFFF Protected region.
Chapter 12� Exploring Windows NT 237

BETA REVIEW
The user process environment block is always mapped at 0x7FFDF000,
while the process’s primary user-mode thread environment block is one
page below that at 0x7FFDE000. As a process creates other worker
threads, they are mapped on page boundaries at the current, highest
unused linear address.

The following use of the SoftICE THREAD command shows how each
subsequent thread is placed one page below the previous thread:

To find out more about the user-mode address space of a process, use the
SoftICE QUERY command. The QUERY command provides a high-level
view of the linear regions that were reserved and/or committed. It uses
the SoftICE WHAT engine to identify the contents of a linear range. From
its output you see the process heaps, modules, and memory-mapped
files, as well as the thread stacks and thread environment blocks.

Heap API

Heap Architecture

Every user-mode application directly or indirectly uses the Heap API
routines, which are exported from KERNEL32 and NTDLL. Heaps are
designed to manage large areas of linear memory and sub-allocate
smaller memory blocks from within this region. The core
implementation of the Heap API routine is contained within NTDLL, but
some of the application interfaces such as HeapCreate and HeapValidate
are exported from KERNEL32. For some API routines, such as HeapFree,
there is no code implementation within KERNEL32, so they are fixed by
the loader to point at the actual implementation within NTDLL.

Note: The technique of fixing an export in one module to the export of
another module is called ‘Snapping.’

Although the Heap API routines used by applications are relatively
straightforward and designed for ease of use, the implementation and
data structures underneath are quite sophisticated. The management of
heap memory has come quite a long way from the standard C run-time
library routines malloc() and free().

:thread winword

TID Krnl TEB StackBtm StkTop StackPtr User TEB Process(Id)

006B FFA7FDA0 FEAD7000 FEADB000 FEADAE64 7FFDE000 WINWORD(83)

007C FF0A0AE0 FEC2A000 FEC2D000 FEC2CE18 7FFDD000 WINWORD(83)

009C FF04E4E0 FC8F9000 FC8FC000 FC8FBE18 7FFDC000 WINWORD(83)
238 Using SoftICE

BETA REVIEW
Specifically, the Heap API handles allocations of large, non-contiguous
regions of linear memory, which are used for sub-allocation and to
optimize coalescing of adjacent blocks of free memory. The Heap API also
performs fast look-ups of best-fit block sizes to satisfy allocation requests,
provides thread-safe synchronization, and supplies extensive heap
information and debugging support.

The primary heap data structure is large, at approximately 1400 bytes, for
a free build and twice that for a checked build. This does not include the
size of other data structures that help manage linear address regions. A
vast majority of this overhead is attributed to 128 doubly-linked list
nodes that manage free block chains. Small blocks, less than 1KB in size,
are stored with other blocks of the same size in doubly linked lists. This
makes finding a best-fit block very fast. Blocks larger than 1KB are stored
in one sorted, doubly-linked list. This is an obvious example of a time
versus space trade-off, which could be important to the performance of
your application.

To understand the design and implementation of the Heap API, it is
important to realize that a Win32 heap is not necessarily composed of
one section of contiguous linear memory. For growable heaps, it might
be necessary to allocate many linear regions, using VirtualAlloc, which
will generally be non-contiguous. Special data structures track all the
linear address regions that comprise the heap. These data structures are
call Heap Segments. Another important aspect of the Heap API design is
the use of the two-stage process of reserving and committing virtual
memory that is provided by the VirtualAlloc and related APIs. Managing
which memory is reserved and which memory is committed requires
special data structures known as Uncommitted Range Tables, or UCRs for
short.

The Ntdll!RtlCreateHeap() API implements heap creation and
initialization. This routine allocates the initial virtual region where the
heap resides and builds the appropriate data structures within the heap.
The heap data structure and Heap Segment #1 reside within the initial
4KB (one page) of the virtual memory that is initially allocated for the
heap. Heap Segment #1 resides just beyond the heap header. Heap
Segment #1 is initialized to manage the initial virtual memory allocated
for the heap. Any committed memory beyond Heap Segment #1 is
immediately available for allocation through HeapAlloc(). If any memory
within Heap Segment #1is reserved, a UCR table entry is used to track the
uncommitted range.

Note: Kernel32!HeapAlloc() is ‘Snapped’ to Ntdll!RtlAllocateHeap.
Chapter 12� Exploring Windows NT 239

BETA REVIEW
Besides the 128 free lists mentioned above, the heap header data
structure contains 8 UCR table entries, which should be sufficient for
small heaps, although as many UCRs as are necessary can be created. It
also contains a table for sixteen (16) Heap Segment pointers. A heap can
never have more than sixteen segments, as no provision is made for
allocating extra segments entries. If the heap requires thread
synchronization, the heap header appends a critical section data
structure to the end of the fixed size portion of the heap header
preceding Heap Segment #1.

The diagram on the next page is a high-level illustration of how a typical
heap is constructed, and how the most important pieces relate to each
other.

The left side of the diagram represents a region of virtual memory that is
allocated for the heap. The heap header appears at the beginning of the
allocated memory and is followed by Heap Segment #1. The first entry
within the heap’s segment table points to this data structure. Committed
memory immediately follows Heap Segment #1. This memory is initially
marked as a free block. When an allocation request is made, assuming
this block of memory is large enough, a portion is used to satisfy the
allocation and the remainder continues to be marked as a free block.
Beyond the committed region is an area of memory that is reserved for
future use. When an allocation request requires more memory than is
currently committed, a portion of this area is committed to satisfy the
request.

Heap Segment #1 tracks the virtual memory region initially allocated for
the heap. The starting address for the heap segment equals to the base
address of the heap and the end range points to the end of the allocated
memory. A portion of the heap in the diagram is in a reserved state, that
is, it has not been committed, so the heap segment uses an available UCR
entry to track the area. When memory must be committed to satisfy an
allocation request, all UCR entries maintained by a particular segment
are examined to determine if the size of the uncommitted range is large
enough to satisfy the allocation. To increase performance, the heap
segment tracks the largest available UCR range and the total number of
uncommitted pages within the virtual memory region of the heap
segment.
240 Using SoftICE

BETA REVIEW
Figure 12-2. Typical Heap Construction
Chapter 12� Exploring Windows NT 241

BETA REVIEW
On the right side of the diagram, a second area of virtual memory was
allocated and is managed by Heap Segment #2. Additional heap segments
are created when an allocation request exceeds the size of the largest
uncommitted range within the existing segment. This is only true if the
size of the requested allocation is less than the heap’s VMthreshold.
When the requested allocation size exceeds the VMThreshold, the heap
block is directly allocated through VirtualAlloc and a new heap segment
is not created.

As mentioned previously, a small number of UCR entries are provided
within the heap header. For illustration purposes, this diagram shows a
UCR TABLE entry that was allocated specifically to increase the number
of UCR entries that are available. The need to create an extra UCR table is
generally rare, and is usually a sign that a large number of segments were
created or that the heap segments are fragmented.

Fragmentation of virtual memory can occur when the Heap API begins
decommitting memory during the coalescing of free blocks.
Decommitting memory is the term used to describe reverting memory
from a committed state to a reserved or uncommitted state. When a free
block spans more than one physical page (4k), that page becomes a
candidate for being decommitted. If certain decommit threshold values
are satisfied, the Heap manager begins decommitting free pages. When
those pages are not contiguous with an existing uncommitted range, a
new UCR entry must be used to track the range.

The following examples use the SoftICE HEAP32 command to examine
the default heap for the Explorer process.

1 Use the -S option of the HEAP32 command to display segment infor-
mation for the default heap:

:heap32 -s 140000

Base Id Cmmt/Psnt/Rsvd Segments Flags Process

00140000 01 001C/0018/00E4 1 00000002 Explorer

01 00140000-00240000 001C/0018/00E4 E4000

Heap segment
memory range Largest

Heap segment
count
242 Using SoftICE

BETA REVIEW
2 Use the -X option of the HEAP32 command to display extended
information about the default heap:

3 Use the -B option of the HEAP32 command to display the base
addresses of heap blocks within the default heap:

In the above output, you can see how the heap header is followed by
Heap Segment #1 and that the first allocated block is just beyond the
Heap Segment data structure.

Managing Heap Blocks

As discussed in the preceding section, the Heap API uses the Win32
Virtual Memory API routines to allocate large regions of the linear
address space and uses heap segments to manage committed and
uncommitted ranges. The actual sub-allocation engine that manages the
allocation and deallocation of the memory blocks used by your
application is built on top of this functionality. To track allocated and
free blocks, the Heap API creates a header for each block.

:heap32 -x 140000

Extended Heap Summary for heap 00140000 in Explorer

Heap Base: 140000 Heap Id: 1 Process: Explorer

Total Free: 6238 Alignment: 8 Log Mask: 10000

Seg Reserve: 100000 Seg Commit: 2000

Committed: 112k Present: 96k Reserved: 912k

Flags: GROWABLE

DeCommit: 1000 Total DeC: 10000 VM Alloc: 7F000

Default size for
commits

VM thresholdDefault size of a
heap segment

:heap32 -b 140000

Base Type Size Seg# Flags

00140000 HEAP 580 01

00140580 SEGMENT 38 01

001405B8 ALLOC 30 01
Chapter 12� Exploring Windows NT 243

BETA REVIEW
The diagram on the next page illustrates how the heap manager tracks
blocks of contiguous memory. The heap manager also tracks non-
contiguous free blocks in doubly-linked lists, but the node pointers for
the next and previous links are not stored in the block header. Instead,
the heap manager uses the first two Dwords within the heap block
memory area.

As shown in Figure 12-3, each block stores its unit size as well as the unit
size of the previous block. The unit size represents the number of heap
units occupied by the heap block. The previous unit size is the number of
heap units occupied by the previous heap block. Using these two values,
the heap manager is able to walk contiguous heap blocks.

Heap units represent the base granularity of allocations made from a
heap. The size of an allocation request is rounded upwards as necessary,
so that it is an even multiple of this granularity. Rather than using a
granularity of 1 byte, the heap manager uses a granularity of 8 bytes. This
means that all allocations are an even multiple of 8 bytes, and that
allocation sizes can be converted to units by round up and dividing by 8.
For example, if a process requests an allocation of 32 bytes, the number
of units is 32 / 8 = 4. If the allocation request was 34 bytes, the allocation
size is rounded upward to an even multiple of 8. In this example, the 34
bytes requested would be rounded to an allocation of 40 bytes, or 5 units.
The process requesting the allocation is unaware of any rounding to
satisfy unit granularity and proceeds as if the allocation request of 34
bytes was actually 34 bytes.

By using a unit size of 8, the types of allocation made by most
applications can be recorded using one word value with the restriction
that the maximum size of a heap block, in units, is the largest unsigned
short or 0xFFFF. This makes the theoretical maximum size of a heap
block in bytes, 0xFFFF * 8, or 524,280 bytes. (This limitation is
documented in the Win32 HeapAlloc API documentation.) Does that
mean that a program cannot allocate a heap block greater than 512k?
Well, yes and no. A heap block larger than 512k cannot be allocated, but
there is nothing to prevent the Heap API from using VirtualAlloc to
allocate a region of linear memory to satisfy the request. This is exactly
what the heap manager does if the size of the requested allocation
exceeds the heaps VMThreshold. The value of VMThreshold is stored in
the heap header and by default is 520,192 bytes (or 0xFE000 units).
When the heap manager allocates a large heap block using VirtualAlloc,
the resulting structure is referred to as a Virtually Allocated Block (VAB).
244 Using SoftICE

BETA REVIEW
Figure 12-3. Tracking Blocks of Contiguous Memory

The heap manager walks contiguous heap blocks by converting the
current heap block’s unit size into bytes and adding that to the heap
block’s base address. The address of the previous heap block is calculated
in a similar manner, converting the unit size of the previous block to
bytes and subtracting it from the heap block’s base address. The heap
manager walks contiguous heap blocks during coalescing free blocks,
sub-allocating a smaller block from a larger free block, and when
validating a heap or heap entry.

Unit sizes are important for free block list management as the array of
128 doubly-linked lists inside the heap header track free blocks by unit
size. Free blocks that have a unit size in the range from 1 to 127 are
stored in the free list at the corresponding array index. Thus, all free
blocks of unit size 32 are stored in Heap->FreeLists[32]. Because it is not
possible to have a heap block that is 0 units, the free list at array index
zero stores all heap blocks that are larger than 127 units; these entries are
sorted by size in ascending order. Because a majority of allocations made
by a process are less than 128 units (1024 bytes or 1K), this is a fast way
to find an exact or best fit block to satisfy an allocation. Blocks of 128
units or greater are allocated much less frequently, so the overhead of
doing a linear search of one free list does not have a large impact on the
overall performance of most applications.
Chapter 12� Exploring Windows NT 245

BETA REVIEW
The flags field within the heap block header denotes special attributes of
the block. One bit is used to mark a block as allocated versus free.
Another is used if it is a VAB. Another is used to mark the last block
within a committed region. The last block within a committed region is
referred to as a sentinel block, and indicates that no more contiguous
blocks follow. Using this flag is much faster than determining if a heap
block address is valid by walking the heap segment’s UCR chain. Another
flag is used to mark a block for free or busy-tail checking. When a process
is debugged, the heap manager marks the block in certain ways. Thus,
when an allocated block is released or a free block is reallocated, the heap
manager can determine if the heap block was overwritten in any way.

The extra info fields of the heap block header have different usage
depending on whether the block is allocated or free. In an allocated
block, the first field records the number of extra bytes that were allocated
to satisfy granularity or alignment requirements. The second field is a
pseudo-tag. Heap tags and pseudo tags are beyond the scope of this
discussion.

For a free block, the extra info fields hold byte and bit-mask values that
access a free-list-in-use bit-field maintained within the heap header. This
bit-field provides quicker lookups when a small block needs to be
allocated. Each bit within the bit-field represents one of the 127 small
block free lists, and if the corresponding bit is set, that free list contains
one or more free entries. A zero bit means that a free entry of that size is
not available and a larger block will need to be sub-allocated from. The
first extra info field holds the byte index into the bit-field array. The
second extra info field holds the inverted mask of the bit position within
the bit-field. Note that this applies to Windows NT 3.51 only. Newer
versions of Windows NT still use the free list bit-field, but do not store
the byte index or bit-mask values. The heap block memory array is also
different depending on the allocated state of the free block. For allocated
blocks, this is the actual memory used by your application. For free
blocks, the first two Dwords (1 unit) are used as next and previous
pointers that link free blocks together in a doubly-linked list. If the
process that allocated the heap block is being debugged, an allocated
heap block also contains a busy-tail signature at the end of the block.
Free blocks are marked with a special tag that can detect if a stray pointer
writes into the heap memory area, or the process continues to use the
block after it was deallocated.
246 Using SoftICE

BETA REVIEW
The following diagram shows the basic architecture of an allocated heap
block.

Figure 12-4. Basic Architecture of an Allocated Heap Block

The portion labeled Extra Bytes is memory that was needed to satisfy the
heap unit size or heap alignment requirements. This memory area should
not be used by the allocating process, but the heap manager does not
directly protect this area from being overwritten. The busy-tail signature
appears just beyond the end of the memory allocated for use by the
process. If an application writes beyond the size of the area requested,
this signature is destroyed and the heap manager signals the debugger
with a debug message and an INT 3. It is possible for a process to write
into the extra bytes area without disturbing the busy-tail signature. In
this case, the overwrite is not caught. The Heap API provides an option
for initializing heap memory to zero upon allocation. If this option is not
specified when debugging, the heap manager fills the allocated memory
block with a special signature. You can use this signature to determine if
the memory block was properly initialized in your code.

The following diagram shows the basic architecture of a free heap block.

Figure 12-5. Basic Architecture of a Free Heap Block

When a block is deallocated and the process is being debugged, the heap
manager writes a special signature into the heap memory area. When the
block is allocated at some point in the future, the heap manager checks
that the tag bytes are intact. If any of the bytes was changed, the heap
manger outputs a debug message and executes an INT 3 instruction. This
is a good thing if the debugger you are using traps the INT 3, but most
debuggers ignore this debug-break because it was not set by the debugger.
As an aside, having the Free List Node pointers at the beginning of the
memory block is somewhat flawed, because a program that continues to
use a free block is more likely to overwrite data at the beginning of the
block than data at the end. Because these pointers are crucial to
navigating the heap, an invalid pointer eventually causes an exception.
When this exception occurs, it can be quite difficult to track this
overwrite back to the original free block.
Chapter 12� Exploring Windows NT 247

BETA REVIEW
The following two examples show how to use the SoftICE HEAP32
command to aid in monitoring and debugging Win32 heap issues.

The first example uses the HEAP32 command to walk all the entries for
the heap based at 0x140000. The -B option of the HEAP32 command
causes the base address and size information to display as the heap
manager would view the information. Without the -B option, the
HEAP32 command shows base addresses and sizes as viewed by the
application that allocated the memory. The output is abbreviated for
clarity and the two heap blocks that appear in bold type are used to
examine the heap block header in the second example.

To examine the contents of an allocated heap block and a free block, the
second example dumps memory at the base address of the heap block at
0x143FE0. Enough memory is dumped to show the subsequent block,
which is a free block at address 0x144008.

� The heap block header fields from the memory dump at address
0x143FE0 are identified with call-outs. This heap block is 5 units in
size (40 bytes) and 0x1C bytes of that size is overhead for the heap
block header (1 unit), busy-tail (1 unit), unit alignment (1 Dword),
and an extra unit left over from a previous allocation.

:HEAP32 -b 140000

Base Type Size Seg# Flags

00140000 HEAP 580 01

00140580 SEGMENT 38 01 TAGGED | BUSYTAIL

001405B8 ALLOC 40 01

. . .

00143FE0 ALLOC 28 01 TAGGED | BUSYTAIL

00144008 FREE FF8 01 FREECHECK | SENTINEL
248 Using SoftICE

BETA REVIEW
The heap block immediately following this is a free block that begins at
address 0x144008. This block is 0x1FF units and the size of the previous
block is 5 units. For free blocks 1KB or larger (80+ units), the Free List
byte position and bit-mask values are not used and are zero. The flag for
this heap block indicates that it is a sentinel (bit 4, or 0x10).

Immediately following the heap header is the location where the heap
manager has placed a doubly-linked list node for tracking free blocks.
The pointer values for the next and previous fields of the node are both
0x1400B8. After the free list node, the heap manager tagged all the
blocks memory with a special signature that is validated the next time
the block is allocated, coalesced with another block, or a heap validation
is performed.

0010:00143FE0 0005 0006 00 07 1C 00

0010:00143FE8 00000000 00000000 60A25F52

0010:00143FF4 ABABABAB ABABABAB

0010:00143FFC FEEEFEEE 00000000 00000000

Unit size

Previous

Unused bytes Busy tail

Heap memory
Segment Flags

Extra bytes

Tag

0010:00144008 01FF 0005 00 14 00 00

0010:00144010 001400B8 001400B8

0010:00144018 FEEEFEEE FEEEFEEE FEEEFEEE FEEEFEEE

0010:00144028 FEEEFEEE FEEEFEEE FEEEFEEE FEEEFEEE

0010:00144038 FEEEFEEE FEEEFEEE FEEEFEEE FEEEFEEE

0010:00144048 FEEEFEEE FEEEFEEE FEEEFEEE FEEEFEEE

Unit size

Previous unit

Doubly linked
free list node

Free check

Segment Flags

Free list byte

Free list bit
Chapter 12� Exploring Windows NT 249

BETA REVIEW
250 Using SoftICE

BETA REVIEW
Appendix A

Error Messages
All break registers used, use in RAM only
You were trying to set a BPX breakpoint in ROM and all the debug
registers were already used. BPX will still work in RAM, because it uses
the INT 3 method. You must clear one of the BPM-style breakpoints
before this will work.

Attach to serial device has FAILED
The initial serial handshaking sequence failed. This might happen if the
wrong serial port is selected, the target machine is not running
SERIAL.EXE, or the serial cable is faulty.

BPM breakpoint limit exceeded
Only four BPM-style breakpoints are allowed due to restrictions of x86
processors. You must clear one of the BPM-style breakpoints before this
will work.

BPMD address must be on DWord boundary
The address specified in BPMD did not start on a Dword boundary. A
Dword boundary must have the two least significant bits of the address
equal 0.

BPMW address must be on Word boundary
The address specified in BPMW did not start on a Word boundary. A
Word boundary must have the least significant bit of the address equal 0.

Breakpoints not allowed within SoftICE
You cannot set breakpoints in SoftICE code.

Cannot interrupt to a less privileged level
You cannot use the GENINT command to go from a lower level to a
higher privilege level. This is a restriction of the x86 processor.

Debug register is already being used
Debug-register specified in BPM command was already used in a previous
 251

BETA REVIEW
BPM command.

Duplicate breakpoint

The specified breakpoint already exists.

Expecting value, not address
The expression evaluator broadly classifies operands as addresses and
values. Addresses have a selector/segment and offset component even if
the address is flat. Certain operators such as * and / expect only plain
values, not addresses, and an attempt to use them on addresses produces
this message. In some cases using the indirection operators produces an
address; refer to Supported Operators on page 154 for details.

Expression?? What expression?
The expression evaluator did not find anything to evaluate. Note that in
some older versions of SoftICE the ? command could be used to get help.
This is no longer the case; use the H command (F1).

Int0D fault in SoftICE at address XXXXX offset XXXXX
Fault Code=XXXX
(or the following message)

Int0E Fault in SoftICE at address XXXXX offset XXXXX
Fault Code=XXXX
These two messages are internal SoftICE errors. The code within SoftICE
caused either a general protection fault (0D) or a page fault (0E). The
offset is the offset within the code that caused the fault. Please write
down the information contained in the message and e-mail or call us.
These messages also display the values in the registers. Be sure to write
down these values also.

Invalid Debug register
A BPM debug-register greater than 3 was specified. Valid debug registers
are DR0, DR1, DR2, and DR3.

No code at this line number
The line number specified in the command has no code associated with
it.

No current source file
You entered the SS command and there was no source file currently on
the screen.

No embedded INT 1 or INT 3
The ZAP command did not find an embedded interrupt 1 or interrupt 3
in the code. The ZAP command only works if the INT 1 or INT 3
252 Using SoftICE

BETA REVIEW
instruction is the one before the current CS:EIP.

No files found
The current symbol table does not have any source files loaded for it.

No LDT
This message displays when you use certain 16-bit Windows information
commands (HEAP, LHEAP, LDT, and TASK) and the current context is not
set to the proper NTVDM process.

No Local Heap
The LHEAP command specified a selector that has no local heap.

No more Watch variables allowed
A maximum of eight watch variables are allowed.

No search in progress
You specified the S command without parameters and no search was in
progress. You must first specify S with an address and a data-list for
parameters. To search for subsequent occurrences of the data-list, use the
S command with no parameters.

NO_SIZE
During an A command, the assembler cannot determine whether you
wanted to use byte, word, or double word.

No symbol table
You entered the SYM, SS, or FILE command and there are no symbols
currently present.

No TSS
You entered the TSS command while there was no valid task state
segment in the system.

Only valid in source mode
You cannot use the SS command in mixed mode or code mode.

Page not present
The specified address was marked not present in the page tables. When
SoftICE was trying to access information, it accessed memory that was in
a page marked not present.

Parameter is wrong size
One of the parameters you entered in the command was the wrong size.
For example, if you use the EB or BPMB commands with a word value
instead of a byte value.
Appendix A� Error Messages 253

BETA REVIEW
Pattern not found
The S command did not find a match in its search for the data-list.

Press ‘C’ to continue, and ‘R’ to return to SoftICE
SoftICE popped up due to a fault (06, 0C, 0D, 0E). Press R to return
control to SoftICE. Press C to pass the fault on to the Windows fault
handler.

SoftICE is not active

This message displays on the help line on monochrome and serial
displays when SoftICE is no longer active.

Specified name not found
You typed TABLE with an invalid table-name. Type TABLE with no
parameters to see a list of valid table names.

Symbol not defined (mysymbol)
You referred to a non-existent symbol. Use the SYM command to get a
list of symbols for the current symbol table.
254 Using SoftICE

BETA REVIEW
Appendix B

Supported Display Adapters
The following table lists the display adaptors SoftICE supported when the
product most recently shipped. However, Compuware regularly adds new
display adaptor support to enhance SoftICE. You can download the latest
support files from the Compuware FTP or BBS sites. Refer to Installing
SoftICE in Getting Stared with DriverStudio for more information about
downloading support files.

Supported Display Adaptors

Standard Display Adapter
(VGA)

Actix GraphicsEngine 32I VL Actix GraphicsEngine 32VL
Plus

Actix GraphicsEngine 64 Actix GraphicsEngine Ultra
64

Actix GraphicsEngine Ultra
Plus

Actix GraphicsEngine Ultra
VL Plus

Actix ProSTAR Actix ProSTAR 64

ATI 8514-Ultra ATI Graphics Pro Turbo ATI Graphics Pro Turbo PCI

ATI Graphics Ultra ATI Graphics Ultra Pro ATI Graphics Ultra Pro EISA

ATI Graphics Ultra Pro PCI ATI Graphics Vantage ATI Graphics Wonder

ATI Graphics Xpression ATI 3d Xpression PCI ATI VGA Wonder

ATI Video Xpression PCI ATI WinTurbo Boca SuperVGA

Boca SuperX Boca Voyager Cardinal VIDEOcolor

Cardinal VIDEOspectrum Chips & Technologies 64310
PCI

Chips & Technologies
65545 PCI

Chips & Technologies 65548
PCI

Chips & Technologies
Accelerator

Chips & Technologies Super
VGA

Cirrus Logic Cirrus Logic 5420 Cirrus Logic 5430 PCI

Cirrus Logic New Cirrus Logic PCI Cirrus Logic RevC

Cirrus Logic 7542 PCI Cirrus Logic 7543 PCI Compaq Qvision 2000

DEC PC76H-EA DEC PC76H-EB DEC PC76H-EC

DEC PCXAG-AJ DEC PCXAG-AK DEC PCXAG-AN
 255

BETA REVIEW
DFI WG-1000 DFI WG-1000VL Plus DFI WG-1000VL/4 Plus

DFI WG-3000P DFI WG-5000 DFI WG-6000VL

Diamond Edge 3D 2200XL Diamond Edge 3D 3200XL Diamond Edge 3D 3400XL

Diamond SpeedStar Diamond SpeedStar 24 Diamond SpeedStar 24X

Diamond SpeedStar 64 Diamond SpeedStar Pro Diamond SpeedStar Pro SE

Diamond Stealth 3D 2000 Diamond Stealth 24 Diamond Stealth 32

Diamond Stealth 64 2001 Diamond Stealth 64 (S3 964) Diamond Stealth 64 (S3
968)

Diamond Stealth 64 Video Diamond Stealth Pro Diamond Stealth SE

Diamond Viper OAK Diamond Viper PCI Diamond Viper VLB

Diamond Stealth VRAM ELSA WINNER 1000AVI ELSA WINNER 1000PRO

ELSA WINNER 1000Trio ELSA WINNER 1000 VL ELSA WINNER 1280

ELSA WINNER 2000PRO ELSA WINNER 2000 VL ELSA WINNER/2-1280

Genoa Digital Video Wizard
1000

Genoa Phantom 32I Genoa Phantom 64

Genoa WindowsVGA 24
Turbo

Genoa WindowsVGA 64
Turbo

Hercules Dynamite

Hercules Dynamite Pro Hercules Graphite 64 Hercules Graphite
Terminator 64

Hercules Graphite
Terminator Pro

IBM 8514 IBM ThinkPad 755CX

IBM Think Pad 365XD Matrox MGA Impression Lite Matrox MGA Impression
Plus

Matrox MGA Impression
Plus 220

Matrox MGA Ultima Plus Matrox MGA Ultima Plus
200

Matrox MGA Millennium Number Nine GXE Number Nine GXE64

Number Nine GXE64 Pro Number Nine 9FX Vision 330 Number Nine 9FX Motion
531

Number Nine 9FX Motion
771

Number Nine FlashPoint 32 Number Nine FlashPoint 64

Number Nine Imagine 128 Number Nine Reality 332 Nvidia NVI Media
Controller

Oak Technology 087 Oak Technology Super VGA Orchid Fahrenheit 1280
Plus

Orchid Fahrenheit Pro 64 Orchid Fahrenheit VA Orchid Kelvin 64

Orchid Kelvin EZ Orchid ProDesigner II Paradise Accelerator Ports
O'Call

Paradise Accelerator VL Plus Paradise Bahamas Paradise Barbados 64

Supported Display Adaptors
256 Using SoftICE

BETA REVIEW
Paradise Super VGA S3 805 S3 911/924

S3 928 PCI S3 Trio32/64 PCI S3 ViRGE PCI

S3 Vision864/964 PCI S3 Vision868/968 PCI Spider 32 VLB

Spider 32Plus VLB Spider 64 Spider Tarantula 64

STB Ergo MCX STB Horizon STB Horizon Plus

STB LightSpeed STB MVP-2X STB MVP-4X

STB Nitro STB Pegasus STB PowerGraph Pro

STB PowerGraph VL-24 Trident 9420 PCI Trident Cyber 93XX

Trident Super VGA Tseng Labs Tseng Labs ET4000

Tseng Labs ET4000/W32 Tseng Labs ET6000 Video Logic 928Movie

Video Seven VRAM/VRAM
II/1024i

Western Digital Western Digital (512K)

Weitek Power 9000 Weitek Power 9100

Supported Display Adaptors
Appendix B� Supported Display Adapters 257

BETA REVIEW
258 Using SoftICE

BETA REVIEW
Appendix C

Troubleshooting SoftICE
If you encounter any of the following problems, try the corresponding
solution. If you encounter further difficulties, technical support is avail-
able from our Technical Support Hotline or via our FrontLine Support
Web site.

Technical Support Hotline: 1-800-538-7822

FrontLine Support Web Site: http://frontline.compuware.com.

Problem Solution

The SoftICE screen is black or
unreadable.

Either your display adaptor does not match the
display adaptor set at installation or SoftICE does
not support your display adaptor. Refer to
Appendix B: on page 255.

The PC crashes when you run
SoftICE and you are not using a
Pentium or Pentium-Pro proces-
sor.

SoftICE incorrectly determined that your system
is using a Pentium processor. Modify the SoftICE
Initialization Settings to disable Pentium support.
Refer to Setting Troubleshooting Options on
page 208.

The PC crashes when you run
SoftICE for Windows 9x.

SoftICE does not support the shutdown option
RESTART THE COMPUTER IN MS-DOS MODE?.
If you reload SoftICE after choosing this option,
SoftICE eventually crashes.

Instead, change the statement BootGUI=1 to
BootGUI=0 within the Windows 95 and Windows
98 hidden file MSDOS.SYS. Then, choose SHUT
DOWN THE COMPUTER? to exit to DOS.

You have difficulty establishing a
modem connection.

The modem is returning result codes SoftICE
does not expect. SoftICE looks for the codes OK,
COMNECT, and RING. Place ATXO in the initial-
ization string.
 259

http://frontline.compuware.com

BETA REVIEW
The mouse behaves erratically
within SoftICE.

Press Ctrl-M.

Windows NT only: the mouse
pointer behaves erratically in the
SoftICE screen.

Moving the mouse while the SoftICE screen pops
up, can cause Windows NT and the mouse hard-
ware to become out of synchronization. Switch
to a full screen DOS box.

Your keyboard locks or behaves
erratically when you load SoftICE.

Modify the SoftICE Initialization Settings to dis-
able num lock and caps lock programming. If this
does not work and you are using Windows NT,
instruct SoftICE not to patch the keyboard driver.
Refer to Setting Troubleshooting Options on
page 208.

Windows 9x crashes when
attempting to scan for serial ports.

If you placed the SERIAL command in the Initial-
ization string, SoftICE establishes a connection to
the port before Windows 9x initializes. When
Windows 9x initialize, it might scramble the con-
nection. Disable the port selected in the Device
Manager. The Device Manager is located within
the System Properties in your Control Panel.

Problem Solution
260 Using SoftICE

BETA REVIEW
Appendix D

Kernel Debugger Extensions
SoftICE for the Windows NT family supports Kernel Debugger (KD)
Extensions written for WinDBG. SoftICE will take a WinDBG extension,
convert it to a Kernel mode driver, and allow the user to execute
informational commands. Users can also write their own extensions
following the WinDBG interface (as found in Wdbgexts.h), and convert
them for use in SoftICE.

To prepare a KD Extension for use with SoftICE:

1 Use the KD2SYS or KD2SYSXLAT program to convert the DLL to a
system driver. This program:

a Copies the DLL to the \SYSTEMROOT\SYSTEM32\DRIVERS
directory and gives it an extension of .SYS

b Modifies the file to tell the system that the file can be loaded as a
system driver and redirect many API calls to SoftICE

c Creates the necessary keys in the system registry to identify the
new file as a system driver

2 Reboot the system. When any system drivers (services) are added or
removed from your system, it must be rebooted. This allows the
service control manager to refresh the list of services in the system.

3 If you are starting SoftICE manually, you will need to start the
extension, in this case by using the “NET START <KDExtension
name>” command from the command prompt to load the extension
into SoftICE.

If you are using other start modes, the extension will be started
automatically at the appropriate time. Further, when you change the
start mode of SoftICE using the ‘Startup Mode Setup’ shortcut, all
extensions will be changed to start with SoftICE.

4 After the service is started, press Ctrl-D to open the SoftICE window.
Type ‘!?’ or ‘!help’ to get a list of the commands and a short
explanation of each one.
 261

BETA REVIEW
The requirements for using Kernel Debugger Extensions are listed below:

1 You must have the current NTOSKRNL.nms loaded. Translate the
.dbg file and use Loader32 to automatically load the file when
SoftICE starts.

2 No file IO is allowed in a KD Extension. The DLL will be converted,
but any attempt to call a file IO function will result in the command
that issued the request being terminated.

3 Do not use exception handling in a KD Extension. Again, the
extension will convert, but any command that attempts to execute
an exception handler will be terminated.

4 A default stack of 32k and a default heap of 8k are allocated when
SoftICE starts. These values can be increased or decreased via the
registry keys: KDHeapSize and KDStackSize
(HKey_LocalMachine\CurrentControlSet\Services\NTICE).

If you change the values using the registry keys, a reboot will be
necessary to refresh the values.
262 Using SoftICE

BETA REVIEW
Appendix E

SoftICE and VMware
Beginning with SoftICE 3.1 and VMware 4.0, SoftICE can be used as a
debugger within a Windows based “virtual machine.” The host operating
system can be any OS that VMware supports. There are certain
restrictions, limitations, and differences between SoftICE running on a
“virtual machine” and SoftICE running on a real machine. SoftICE can be
used as a single machine debugger with the UVD. It can also be used with
the standard VGA driver (without the VMware Tools installed). Remote
debugging can be accomplished on the same machine between the
physical host machine and the virtual machine with no cables involved,
or you can perform remote debugging using the serial port or named
pipes.

OS Support
The operating systems supported by SoftICE for virtual machines are the
same as those on physical machine. SoftICE 3.1 supports Win9x, Win31,
DOS, and NT4 through frozen versions. Win2k and later are in active
development.

Hardware Support
This is where the differences between SoftICE on a physical machine and
SoftICE on a virtual machine come into play. Because all hardware
within VMware is virtualized, a few oddities seem to occur. These are
detailed below in the limitations and setup section.
 263

BETA REVIEW
Setup/Installation
For installation, do the normal DriverStudio/SoftICE installation. Be
certain that your VMware virtual OS is completely configured with
VMware Tools, if you choose to have the tools installed prior to installing
SoftICE. If you install the VMware Tools afterwards, you will need to
reconfigure your SoftICE settings by bringing up the DriverStudio/
SoftICE Configuration dialog in the virtual OS and reselecting your video
and possibly mouse settings.

Limitations and Restrictions
Due to the nature of the virtualized hardware there are several features
that do not work within “virtual” SoftICE.

By default, the UVD will not draw properly in SoftICE. You will need to
set the “svga.maxFullscreenRefreshTick” in your VMware configuration
file as specified in the “Universal Video Driver” section below.

Remote debugging via TCP/IP is not operational at this time. For remote
debugging, use the serial port either with a physical cable or with a
named pipe. (See the “Remote Debugging” section below.)

Remote Debugging
There are several options available when performing remote debugging.
For remote debugging, you can connect machines by one of several
methods. All remote debugging is limited to either the serial port or a
named pipe. The preferred method of remote debugging is over named
pipes. TCP/IP based network debugging is not operational in this release.

The methods of serial connection that SoftICE support are:

� Between virtual machine and VMware host over physical serial port

� Between virtual machine and VMware host over named pipes for
serial ports

� Between two virtual machines over physical serial port

� Between two virtual machines over virtual serial ports
264 Using SoftICE

BETA REVIEW
Configuration
The following procedures are needed for all serial connections types.

1 Within the virtual OS, run DriverStudio/SoftICE Settings and choose
the “Serial Debugging” tab. Choose the serial port in the “Serial
Connection” drop list. Note that serial port X in this dialog box
should match the VMware Virtual Machine Setting’s “Serial Y” which
may use any arbitrary physical serial port.

2 Within SoftICE, start your remote connection exactly as if you had
real hardware. This means that you should use the ‘net comX
baudrate’ or check the Auto Connect option in the SoftICE Serial
Debugging page.

Note The remaining configuration steps will differ based upon the method
of serial connection chosen.

3 If you choose ‘(1) between virtual machine and VMware host over
physical serial port’, you will need to:

� Have two unused serial ports on your machine.

� Connect a null modem cable between these two ports.

� From within VMware, edit the Virtual Machine Settings. Add a
serial port to the virtual machine if it is not already in the setting.
Choose ‘Serial N’, making sure that the following items are
checked:
� Connect at power on.

� Use physical serial port. Choose the proper serial port and be
certain that this serial port is also chosen in the DriverStudio/
SoftICE Settings in the virtual OS and is used on the SoftICE
command line.

� Yield CPU on poll. On the host machine run the ‘siremote
comY baudrate’. The comY needs to be the comm port that is
not used by the VMware session.

At this point you should have a connection. If not, go back and
verify each step above.

4 If you choose ‘(2) between virtual machine and VMware host over
named pipes for serial ports’, you will need to:

� From within the VMware, edit the Virtual Machine Settings.
Choose ‘serial N’, making sure the following items are checked:
� Connect at power on.
Appendix E� SoftICE and VMware 265

BETA REVIEW
� Use Named Pipe. For the name, choose whatever come to
mind - a good name might be \\.pipe\sipipe

� Choose “This end is the server”, “The other end is an applica-
tion”

� Yield CPU on poll.

� On the host machine, run siremote PIPE sipipe. The name
part of the pipe will match whatever is set in the VMware Virtual
Machine Settings.

At this point you should have a connection. If not, go back and
verify each step above.

5 If you choose ‘(3) between two virtual machines over physical serial
port’, the setup and settings are identical to the first entry, depending
upon your chosen connection type.

6 If you choose ‘(4) between two virtual machines over virtual serial
ports’, you will need to configure both VMware sessions and SoftICE.

� On both virtual machines, you will need to setup the comm ports
to use a named pipe.

� On the virtual machine running the SoftICE debugger, you will
need to configure the following:
� In the VMware configuration settings, choose the serial port

on which to use a named pipe, “This end is the server”, and
“The other end is a virtual machine”

� Within the VMware session, enable SoftICE serial debugging
on ComX, where X is the value that is in the VMware
configuration of “Serial X”

� Within SoftICE, choose net comX baudrate

� On the other virtual machine that will be running siremote, you
will need to configure it as follows:
� In the VMware configuration settings, choose the serial port

that will use a named pipe, “This end is the client”, and “The
other end is a virtual machine”

� Open to a Command Prompt, change to the SoftICE
directory, and issue the command siremote comX
baudrate, where X is the value that is in the VMware
configuration of “Serial X”
266 Using SoftICE

BETA REVIEW
Mouse
If you encounter lockups, you may need to disable the mouse within the
configuration file for the VM in question. You can find the VM by going
to the directory where the VM is located and edit the VMware
configuration text file that ends in .vmx. Add the following entry to the
file:

vmmouse.present = "FALSE"

Universal Video Driver
In UVD mode, SoftICE does not correctly redraw inside VMware. This is
due to the virtual machine not recognizing direct writes into the VM’s
frame buffer. To work around this, you will need to add an entry to your
VMware configuration file (located in the directory of the VM with an
extension of .vmx):

svga.maxFullscreenRefreshTick = "2"

The lower you set this value, the more responsive the SoftICE screen will
be. Setting it to 1 will cause SoftICE to redraw on par with a physical
single machine. Higher values will delay the redraws. The downside to
setting a lower value is that mouse flickering increases within the VM.
Appendix E� SoftICE and VMware 267

BETA REVIEW
268 Using SoftICE

BETA REVIEW
Appendix F

SoftICE API Specification
This appendix provides an overview of:

� The Purpose of Having a Public Interface and API

� Setting Up SoftICE for API Access

� Running the Sample Driver

� Setting Up Your Driver

� Checking for the Existence of SoftICE

� Using the SoftICE API

� API Definition

The API feature of SoftICE will only apply to specific users in specific
cases. Unless you have a need for accessing SoftICE externally, we suggest
that you not take advantage of the public interface.

By default SoftICE does not expose a public device interface. This is done
by design, as there have been past incompatibilities between SoftICE and
third-party software. We are now providing a means to create a user-
defined public device name.

The Purpose of Having a Public Interface and API
There are several purposes for defining a public interface for SoftICE. The
main reason for defining a public interface is that you can add
conditional code to your driver that will execute if SoftICE is present. For
example, you may want to add an embedded int3 into your DriverEntry,
but only if SoftICE is running.

Note: Having an int3 in your code, without a debugger present, would
cause a blue screen.
 269

BETA REVIEW
Note: The SoftICE API is subject to change at any point in time. We will do
our best retain any functionality once it exists, and maintain
backwards compatibility. However, in some extreme cases we may
not be able to do so. There are no guarantees with the API, other
than that we will fix discovered bugs, and listen to your suggestions
for enhancements.

Setting Up SoftICE for API Access
1 Edit your winice.dat file by whatever means you are comfortable with.

We suggest you use the Advanced page of the SoftICE Initialization
tab in the Settings utility (from the Start menu under
Compuware|Driver Studio).

2 Make a new entry entitled PUBLICDEVICENAME=nameofyourchoice
The name that you enter must be the pure device name without the
starting \\device\\ and it must adhere to all valid naming conventions
as defined by the DDK. No validation is done on this name.
Internally, when the name is created, a \\device\\ is pre-pended for the
device name and \\DosDevices\\ is pre-pended for the symbolic link.

3 Reboot your machine if SoftICE is already running.

Note: If there is a problem creating the device when SoftICE starts, an entry
will be added to Event Viewer under the System tab. Within SoftICE
this event information is also available via the ver –x command.

Running the Sample Driver
We have provided sample code that shows how to open up and query for
the existence of SoftICE. Note that this sample will exit after running and
is not indicative of a real driver. We have only provided the necessary
code to access SoftICE.

1 Search for SI_PUBLIC_NAME and change this to the name that you
defined in your winice.dat for PUBLICDEVICENAME.

2 Compile the sample driver located at
c:\program files\Compuware\driverstudio\SoftICE\API\Sample\QuerySI
A .reg file has been included for installation. Any means of driver
installation can be used.

3 Optionally, start up SoftICE.

4 Issue net start querysi from a dos command box, or by whatever means
you like to start a driver.
270 Using SoftICE

BETA REVIEW
Inside of SoftICE (in the command window) you should see several
DbgPrint messages detailing each step of the process (driver startup,
query for existence, version number querying, and exit).

Setting Up Your Driver
We suggest you copy or implement your code based on the sample code
in querysi.cpp.

Note: Pay particular attention to the Si_XXXXX calls.

Checking for the Existence of SoftICE
For a driver, get a device object pointer to SoftICE using the name that
you defined in your winice.dat for PUBLICDEVICENAME.

This can be done through, IoGetDeviceObjectPointer. If you are able to get
this object pointer, it means that SoftICE is loaded and running with a
public interface. Not being able to get an object pointer means either that
SoftICE is not running, or it has not had a public interface defined.

Note: We suggest that you store the existence of SoftICE in a global
variable and avoid constantly trying to get a device object pointer for
each conditional piece of code.

Note: Once you have retrieved the object pointer, be certain to delete it
when you don’t need it and/or when your driver is shutting down.

For an application, you will want to make a call to:

handleTest =
CreateFile(“\\\\.\\whatever_your_public_devicename_is”,
GENERIC_READ|GENERIC_WRITE, 0, NULL, OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL, NULL);

If you are able to get the handle, SoftICE is loaded and has a publicly
defined interface. Once you have the handle, make a call to:

Close(handleTest);

Note: We suggest that you store the existence of SoftICE in a global
variable and avoid constantly trying to get a device object pointer for
each conditional piece of code.
Appendix F� SoftICE API Specification 271

BETA REVIEW
Using the SoftICE API
The SoftICE API will be an ever expanding set of functionality to meet
the needs of our users. In its initial incarnation it is very small and
limited. It will grow to expand the requests of our customers. Please feel
free to submit any requests for new API functionality through our
support group or by emailing to:

driverstudioeng@compuware.com

To make API calls from a driver, you will need to use the normal
Windows DDK interdriver communication mechanism of IOCTLs. The
defined IOCTLs are located in SoftICE\API\Include\si_api.h. This file should
be included in your code.

Depending upon what features of the API you are using, you should
make your first IOCTL call getting the SoftICE version information, and
then modify your code according to the capabilities of the particular
version of SoftICE in use. For example, in SoftICE 3.2 we may only define
one API IOCTL called GetVersion, while in SoftICE 3.3 we may define a
1000 IOCTLs. If your code assumed that all users will be running SoftICE
version 3.3 with its 1000 APIs you could run into problems. Basically,
write your code to take advantage of the capabilities for current version
and newer. In pseudo code, “if softiceversion is >= 432 then
set_a_breakpoint_API”. This way, for users of SoftICE version 4.3.1, your
code will still function properly by not attempting to set a breakpoint,
whereas users of SoftICE versions later than 4.3.2 will have the enhanced
functionality.

API Calls from a Driver

1 Open up a connection to SoftICE when your driver starts

2 For each ioctl call, initialize an event with KeInitializeEvent

3 Build up an ioctl with IoBuildDeviceIoControlRequest

4 Call SoftICE with an IoCallDriver

5 Wait on the event with a KeWaitForSingleObject call

6 Release the connection to SoftICE with ObDereferenceObject once your
driver exits, or the connection to SoftICE is no longer needed
272 Using SoftICE

BETA REVIEW
API Calls from a Ring3 Application

1 Open up a file handle connection to SoftICE with CreateFile when
your application starts

2 For each call into SoftICE, call SoftICE with DeviceIoControl

3 Release the connection with a CloseHandle call once your application
exits, or the connection to SoftICE is no longer needed

API Definition
This information is also in the APIs public header file located in your
installation directory underneath SoftICE\API\Include\si_api.h.
Appendix F� SoftICE API Specification 273

BETA REVIEW
274 Using SoftICE

Glossary
Interrupt Descriptor Table (IDT)

Table pointed to by the IDTR register, which defines the interrupt/exception handlers.
Use the IDT command to display the table.

MAP file

Human-readable file containing debug data, including global symbols and usually line
number information.

MMX

Multimedia extensions to the Intel Pentium and Pentium-Pro processors.

Object

Represents any hardware or software resource that needs to be shared as an object.
Also, the term section is sometimes called an object. Refer to section.

One-Shot Breakpoint

Breakpoint that only goes off once. It is cleared after the first time it goes off or the
next time SoftICE pops up for any reason.

Ordinal Form

When a symbol table is not relocated, it is said to be in its ordinal form; in this state,
the selectors are section numbers or segment numbers (for 16 bit).

Point-and-Shoot Breakpoint

Breakpoint you set by moving the cursor into the code window using the BPX or HERE
command.

Relocate

Adjust program addresses to account for the program’s actual load address.
 243

Section

In the PE file format, a chunk of code or data sharing various attributes. Each section
has a name and an ordinal number.

Sticky Breakpoint

Breakpoint that remains until you remove it. It remains even through unloading and
reloading of your program.

SYM File

File containing debug data, including global symbols and usually line number infor-
mation. The SYM file is usually derived from a MAP file.

Symbol Table

SoftICE-internal representation of the debugging information, for example, symbols
and line numbers associated with a specific module.

Virtual Breakpoint

Breakpoint that can be set on a symbol or a source line that is not yet loaded in
memory.
244 Using SoftICE

Index
Symbols
+ (plus sign) 106, 108
. (dot) command 104

A
A command 104
ADDR command 224, 226
address space 237
Advanced Debugging 212
Alt-C 99
Alt-D 111
ALTKEY command 78
Alt-L 25, 105
Alt-R 109
Alt-W 106
ANSWER

command 189
initialization string 199

Applications
building 46
debugging 44

Assigning expressions 113

B
baudrate 188
BC command 151
BD command 151
BE command 151
BH command 151
Bitwise operators 155
BL command 28, 30, 151
BMSG command 132, 138
Borland compiler 47
BPCOUNT function 143
BPE command 29, 151
BPINDEX expression function 145

BPINT command 132, 136
BPIO command 132, 137
BPLOG expression function 145
BPM command 132, 135
BPMISS expression function 144
BPT command 151
BPTOTAL expression function 144
BPX command 27, 104, 132, 134
Breakpoint action 133

setting 140
Breakpoint index 150
Breakpoints

BPCOUNT function 143
BPINDEX 145
BPLOG function 145
BPMISS function 144
BPTOTAL function 144
conditional 29, 141

expression 133
context 139
criteria to trigger 140
duplicate 149
elapsed time 149
embedded 151
execution 132, 134
expressions 150
I/O 132, 137
INT 1 and INT 3 151
interrupt 132, 135
manipulating 150
memory 30, 132, 135
one-shot 26
point-and-shoot 27
statistics 150
sticky 27, 131
types 132
using 131
 245

virtual 140
window message 132, 138

BSTAT command 144, 145, 150
Building

applications 46
debug information 20

C
change registry entry 176
Checked Build 212
CLASS command 33
Closing

Code window 99
Data window 111
FPU Stack window 116
Locals window 105
Register window 109
SoftICE windows 81
Watch window 106

Code mode 101
Code window 15, 79, 99

closing 99
disassembled instruction 102
entering commands 104
JUMP 103
modes 101
moving the cursor to 83, 99
NO JUMP 103
opening 99
resizing 99
scrolling 100
strings 103

Collapsing
stacks 106
typed expressions 108

Command
history, recalling 93
prompt 188

Command line arguments, passing 50
Command window 15, 79, 90

associated commands 99
history buffer 98
scrolling 90

Commands
. (dot) 104
A 104
ALTKEY 78
ANSWER 189
BC 151
BD 151
BE 151
BH 151

BL 28, 30, 151
BMSG 132, 138
BPE 29, 151
BPINT 132, 136
BPIO 132, 137
BPM 132
BPX 27, 104, 132, 134
BSTAT 150
CLASS 33
CR 110
D 111, 113, 114
DATA 111
DEX 114
DIAL 189
E 114
editing 93
entering 88, 90
FILE 104
FORMAT 111, 113
G 27, 30, 31, 33, 109, 110
H 32, 89
HERE 26, 104, 134
HWND 139
IDT 136
informational 32
LINES 81
LOADER32 61, 63
LOCALS 106
MACRO 97
P 24, 109, 110, 209
recalling 93
S 114
SET 90, 99, 104
SRC 24, 104
SS 104
SYM 35
syntax 91
T 109, 110
TABLE 35
TABS 104
TYPES 106
U 18, 26, 104
WATCH 107
WC 99
WD 111
WF 116
WL 105
WR 109
WS 115
WW 106
WX 116
X 30, 31, 33
246 Using SoftICE

commands, Universal Video Driver 76
Compiler options, 32-bit 46
Compilers

Borland 47
Delphi 47
MASM 47
Microsoft Visual C++ 47
Symantec C++ 47
Watcom C++ 47

Conditional breakpoints 141
count functions 143
performance 149
setting 29

Conditional expression breakpoints 133
connection benefits/disadvantages 176
Controlling SoftICE windows 81
Copying data 87
Count functions, conditional expressions 143
CPU flags 109
CR command 110
Creating Persistent Macros 205
CSRSS 231
Ctrl-D 78
Cursor, moving among windows 83
Customizing SoftICE 191
Cycling Data windows 111

D
D command 88, 111, 113, 114
Data

copying 87
pasting 87

DATA command 111
Data window 79, 111

assigning expressions 114
associated commands 114
closing 111
cycling through 111
fields 112
format 111
moving the cursor to 83, 111
opening 111
resizing 111
scrolling 112
viewing addresses 111

Debug information, building 20
Debugging

applications 44
device drivers 44
features 7
generating information 46
preparing to 171

Deleting
symbol tables 58
watch 107

Delphi compiler 47
DEVICE 213
Device drivers, debugging 44
DEX command 114
DIAL

command 189
initialization string 199

dial-up modem 176
Direct Null Modem connection 175
Disable

mapping of non-present pages 209
mouse support 208
Num Lock and Caps Lock programming 208
Pentium support 209
thread-specific stepping 209

Disabling
SoftICE 78

Disabling SoftICE 78
Disassembled instruction, Code window 102
Display adapters, supported 255
Display diagnostic messages 194
Displaying registers 117
DLL exports 171
Do not patch keyboard driver 209
DRIVER 213
DriverStudio Remote Data (DSR)

namespace extension 177
DSR Namespace Extension 177
Duplicate breakpoints 149

E
E command 114
Eaddr function 166
EBP register 148
Editing

commands 93
flags 110
Local Data 24
memory 113
registers 110

EE 153
Effective address 108
Embedded breakpoints 151
Enabling serial debugging

host 188
target 188

Entering commands 88, 90
syntax 91
Index 247

Entry points 172
unnamed 172

Error messages 251, 261, 263, 269
ESP register 148
establish a serial connection 187
Establishing

a connection, specialized network drivers 182
a Modem Connection 189

Evalue function 167
Execution breakpoints 132, 134
Expanding

stacks 106
typed expressions 108

Export
information 198
names, expressions 173

Exports 191
DLL 171

Expression
evaluator 153

forming expressions 158
operators 154

Expression types 167
Expressions 153

assigning 113
breakpoints 150
export names 173
forming 158
watching 107

F
Fault trapping 120
Faults, trapping 120
Fields, Data window 112
FILE command 104
Flags 108

editing 110
FORMAT command 111, 113
Formatting, Data window 111
Forming expressions 158
FPU Stack window 79, 116

closing 116
displaying registers 117
moving the cursor to 83
opening 116

Function keys 92, 203
modifying 203

G
G command 27, 30, 31, 33, 109, 110
GDI objects 232

GDT command 221
General settings 191

modifying 193
Global Descriptor Table 219, 221

H
H command 32, 89
Handle values 234
Hardware Requirements, Specialized

Network Drivers 181
Headless Mode 176
Heap

API 238
architecture 238
blocks 243

HEAP32 command 231, 242
Help

for SoftICE xvii, 89
for Symbol Loader xvii
line 15, 79, 89

HERE command 26, 104, 134
History buffer 98

size 194
host computer 176
HWND command 139

I
I/O breakpoints 132, 137
IDT command 136, 219
Information, Help line 89
Informational commands 32
Initialization

file 191
settings

Remote Debugging 192
string 193

modem 199
installation, specialized network drivers 181
installing a serial connection 186
INT 1 instruction breakpoints 151
INT 3 instruction breakpoints 151
Intel architecture 218
Interrupt

breakpoints 132, 135
Descriptor Table 219

J
JUMP string 103
248 Using SoftICE

K
KD Extensions 261
Kernel, Windows NT 217
Keyboard Mappings 192

modifying 203

L
LDT command 222
LINES command 81
Literals 159
LOADER32 61, 63
Loading

exports dynamically 173
modules 48
SoftICE 14, 45, 46
source 48
symbols 34

Local Descriptor Table 219, 222
local network (LAN) debugging 176
LOCALS command 106
Locals window 79, 105

associated commands 106
closing 105
moving the cursor to 83, 105
opening 105
resizing 105
scrolling 105

Logical operators 155
Lowercase disassembly 195

M
Macro

definitions 192
limit 207

MACRO command 97, 236
Macros

definitions 205
recusion 97, 206
Run-time 96

Manipulating breakpoints 150
MAP32 command 223, 237
MASM compiler 47
Math operators 154
MAXIMIZE 76
Memory

breakpoints 30, 132, 135
editing 113
map of system memory 223

Messages, error 251
Microsoft Visual C++ compiler 47
Mixed mode 101

MMX registers 117
MOD command 213, 237
Modem 188

connection 175, 188
hardware requirements 188
initialization strings 199

Modes
code 101

window 101
Mixed 101
Source 101

Modifying
function keys 203
General settings 193
Keyboard Mappings 203
SoftICE Initialization settings 191, 192

Module
Load Breakpoint 132
Unload Breakpoint 132

Modules
loading 48
translating 48

Mouse commands
Display 88
Previous 88
U 88
What 88

Moving
the cursor 83
the SoftICE Window 81

N
Navigating SoftICE 75
Nesting limit 97
NET

ALLOW 190, 201
command 190
COMx 190
DISCONNECT 190
HELP 202
HELP command 190
PING 190, 201
RESET 190, 201
SETUP 190
START 190, 201
STATUS 202
STOP 190, 202

network 176
Network Interface Card (NIC) interface 175
NMDemo application 14
NMS file 49
Index 249

NMSYM.EXE 62
NO JUMP string 103
NonPaged System area 229
NTCALL command 220
NTOSKRNL.EXE 218
null modem cable 186

O
OBJDIR 213
OBJTAB command 223, 235
One-shot breakpoints 26
Opening

Code window 99
Data window 111
FPU Stack window 116
Locals window 105
Register window 109
SoftICE windows 81
Watch window 106

Operators
bitwise 155
expression evaluator 154
logical 155
math 154
precedence 157
special 156

P
P command 24, 28, 109, 110, 209
Packaging source files 53
PAGE command 226
Page Table Entry 227
Paged Pool System area 228
Passing command line arguments 50
Pasting data 87
Persistent Macros 205
PHYS command 226
Pointer

operations 156
operators 154

Precedence operators 157
Predefined Functions 164
Pre-loading

source 196
symbols 196

Preparing to debug 171
Process address space 237
Processor Control Region 229
ProtoPTEs 227
PTE 227

Q
QUERY command 231, 237, 238

R
Recalling command history 93
refresh the display manually 181
Register window 79, 108

associated commands 110
closing 109
CPU flags 109
moving the cursor to 83, 109
opening 109

Registers 108, 158
editing 110
window 15

Remote Debugging 192, 199
details 181
NET commands 200
start session 202

remote location 176
removing

a serial connection 187
the modem connection 189

Requirements, Remote Debugging 200
Reserving symbol memory 197
Resizing

Code window 99
Data window 111
Locals window 105
SoftICE screen 81
SoftICE windows 82
Watch window 106

Resources for Advanced Debugging 212
Results Types 167
Run-time macros 96

S
S command 114
Scrolling

Code window 100
Command window 90
Data window 112
Locals window 105
Watch window 107
windows 83

Serial
Connection 186

hardware requirements 186
connection 199
debugging 176
port 186
250 Using SoftICE

SET command 90, 99, 104
Setting

breakpoint actions 140
breakpoints 26, 27
conditional breakpoints 29, 141
execution breakpoints 134
I/O breakpoints 137
interrupt breakpoints 135
memory breakpoints 30, 135
source file search path 57
Video Memory size 77
window message breakpoints 138

SIREMOTE 188
connecting to a remote target 190
network connections 190
Serial Connection 189
support application 189

SIVNIC Installation 184
SoftICE

and VMWare 263
API Specification 269
customizing 191
disabling 78
features 7
informational commands 32
initialization file 191
loading 14, 45, 46
modem connection 175, 188
navigating through 75
overview 7
product overview 7
screen 79, 176

resizing 81
user interface 9, 79
using 119

SoftICE Initialization settings
Exports 191
General 191
Keyboard Mappings 192
Macro Definitions 192
modifying 191, 192
Symbols 191
Troubleshooting 192

SoftICE windows
closing 81
Code 79, 99
Command 79, 90
controlling 81
Data 79, 111
FPU Stack 79, 116
Locals 79
opening 81

Register 79, 108
resizing 82
Watch 79, 106

Sorting symbol tables 58
Source

loading 48
mode 101
packaging 53
pre-loading 196
specifying 55
translating 48

Special operators 156
specialized network drivers 178, 181
Specifying Source Files 55
SRC

command 24, 102, 104
file 55

SS command 104
Stack frame 24, 148
Stacks

collapsing 106
expanding 106

Sticky breakpoints 27, 131
Strings, Code window 103
SYM command 35, 228
Symantec C++ compiler 47
Symbol

buffer size 197
Files 214
Search Order 163
Sources 163
tables

deleting 58
sorting 58

Symbol Loader 11, 37, 48, 192
command line interface 61
command-line utility 62

Symbols 161, 191
pre-loading 196
reserving memory 197
tables 34

System
Code area 223
memory map 223
Page Table Entries 227
Tables System area 224
View System area 223
Index 251

T
T command 109, 110
TABLE command 35
Tables 34
TABS command 104
Tail recursion 97
target computer (machine) 176
Task State Segment 219, 221
technical support 259
Telephone number 199
THREAD command 238
Time stamp counter 149
Total RAM 194
Trace buffer size 194
Translating

modules 48
source 48

Trap NMI 195
Triggering breakpoints 140
Troubleshooting 192

error messages 251, 261, 263, 269
options 208
SoftICE 259

TSS command 221
type of remote connection 176
Typecasting 168
Typed expressions

collapsing 108
expanding 108

TYPES command 106
typical debugging environment 178

U
U command 18, 26, 88, 104
UND 178, 183

Establishing a Network Connection 185
Hardware Requirements 183
Installation 183
Removal 185

uninstalling specialized network drivers 182
Universal Network Driver 183
Universal Video Driver 76
USER

object 232
creation 236
Table 235

User-defined
commands 205
settings 191

V
Viewing addresses 111
Virtual breakpoints 140

W
WATCH command 107
Watch window 79, 106

associated commands 108
closing 106
fields 108
moving the cursor to 83, 106
opening 106
resizing 106
scrolling 107

Watch, deleting 107
Watching expressions 107
Watcom C++ compiler 47
WC command 99
WD command 111
WF command 116
WHAT command 88, 236
Win32 subsystem 231
Window message breakpoints 132, 138
Windows

Code 15, 79, 99
Command 79
components 231
Data 79, 111
FPU Stack 79, 116
Locals 79, 105
moving the cursor among 83
Register 79, 108
scrolling 83
Watch 79, 106

Windows NT
DDK 213
exploring 211
kernel 217
references 216
system memory map 223

WL command 105
WR command 109
WS command 115
WW command 106
WX command 116

X
X command 30, 31, 33
252 Using SoftICE

	Preface
	Purpose of This Manual
	What This Manual Covers
	Conventions Used In This Manual
	Accessibility
	How to Use This Manual
	Other Useful Documentation
	Customer Assistance
	For Non-Technical Issues
	For Technical Issues

	Choosing Your SoftICE Version
	SoftICE or Visual SoftICE?
	Single Machine Debugging: SoftICE
	Dual Machine Debugging: Visual SoftICE
	But Which One Should I Use?

	Welcome to SoftICE
	Product Overview
	Benefits of SoftICE
	How SoftICE is Implemented

	SoftICE User Interface
	About Symbol Loader

	SoftICE Tutorial
	Introduction
	Loading SoftICE
	Controlling the SoftICE Screen
	Moving and Resizing SoftICE Windows

	Overview of the Sample Software
	Building the Sample Code
	Launching the Application
	Tracing and Stepping through the Source Code
	Viewing and Editing Local Data
	Editing Local Data

	Setting Point-and-Shoot Breakpoints
	Setting a One-Shot Breakpoint
	Setting a Sticky Breakpoint

	Setting a Conditional Breakpoint
	Editing a Breakpoint

	Setting a Read-Write Memory Breakpoint
	Using SoftICE Informational Commands
	Using Symbols and Symbol Tables
	Using Symbol Loader
	Single File Mode
	Workspace View Mode

	A Word on Symbol Server Technology

	Loading Code into SoftICE
	Debugging Concepts
	Preparing to Debug Applications
	Preparing to Debug Device Drivers and VxDs

	Loading SoftICE
	Early Loading of SoftICE
	Loading SoftICE Manually

	Building Applications with Debug Information
	Using Symbol Loader to Translate and Load Files
	Modifying Module Settings
	Modifying General Settings
	Modifying Translation Settings
	Modifying Debugging Settings

	Specifying Modules and Files
	Modifying Source Files

	Deleting Symbol Tables
	Downloading Symbols from a Symbol Server
	Using Symbol Loader From an MS-DOS Prompt
	Using the Symbol Loader Command-Line Utility
	NMSYM Command Syntax
	Using NMSYM to Translate Symbol Information
	Using NMSYM to Load a Module and Symbol Information
	Using NMSYM to Load Symbol Tables or Exports
	Using NMSYM to Unload Symbol Information
	Using NMSYM to Save History Logs
	Getting Information about NMSYM

	Navigating Through SoftICE
	Introduction
	Universal Video Driver
	Setting the Video Memory Size

	Popping Up the SoftICE Screen
	Disabling SoftICE at Startup
	Stopping SoftICE at Startup
	Using the SoftICE Screen
	Resizing the SoftICE Screen
	Controlling SoftICE Windows
	User-definable Pop-up Menus
	Inline Editing
	Copying and Pasting Data
	Entering Commands from the Mouse
	Obtaining Help

	Using the Command Window
	Scrolling the Command Window
	Entering Commands
	Recalling Commands
	Regular Expressions in SoftICE
	Using Run-time Macros
	Saving the Command Window History Buffer to a File
	Associated Commands

	Using the Code Window
	Controlling the Code Window
	Viewing Information
	Entering Commands From the Code Window

	Using the Locals Window
	Controlling the Locals Window
	Expanding and Collapsing Stacks
	Associated Commands

	Using the Watch Window
	Controlling the Watch Window
	Setting an Expression to Watch
	Viewing Information
	Expanding and Collapsing Typed Expressions
	Associated Commands

	Using the Register Window
	Controlling the Register Window
	Viewing Information
	Editing Registers and Flags
	Associated Commands

	Using the Data Window
	Controlling the Data Window
	Viewing Information
	Changing the Memory Address and Format
	Editing Memory
	Assigning Expressions
	Associated Commands

	Using the Stack Window
	Using the Thread Window
	Controlling the Thread Window

	Using the Pentium III/IV Register Window
	Using the FPU Stack Window
	Viewing Information

	Using SoftICE
	Debugging Multiple Programs at Once
	Trapping Faults
	Ring 0 Driver Code (Kernel Mode Device Drivers)
	Ring 3 (32-bit) Protected Mode (Win32 Programs)
	Ring 3 (16-bit) Protected Mode (16-bit Windows Programs)
	SoftICE Crash Dump Utility

	About Address Contexts
	Using INT 0x41 .DOT Commands
	Understanding Transitions From Ring 3 to Ring 0

	Using Breakpoints
	Introduction
	Types of Breakpoints Supported by SoftICE
	Breakpoint Options
	Execution Breakpoints
	Memory Breakpoints
	Interrupt Breakpoints
	I/O Breakpoints
	Window Message Breakpoints
	Module Load/Unload Breakpoints

	Understanding Breakpoint Contexts
	Virtual Breakpoints
	Setting a Breakpoint Action
	Conditional Breakpoints
	Conditional Breakpoint Count Functions
	Using Local Variables in Conditional Expressions
	Referencing the Stack in Conditional Breakpoints
	Performance
	Duplicate Breakpoints

	Elapsed Time
	Breakpoint Statistics
	Referring to Breakpoints in Expressions
	Manipulating Breakpoints
	Using Embedded Breakpoints

	Using Expressions
	Expressions
	Using the Expression Evaluator
	Supported Operators
	Pointer Operations
	Operator Precedence

	Forming Expressions
	Registers
	Literals
	Symbols
	Symbol Sources and Search Order

	Built-in Functions
	Eaddr Function
	Evalue Function

	Expression Evaluator Type System
	Results Types
	Typecasting

	Result Formats

	Loading Symbols for System Components
	Loading Export Symbols for DLLs and EXEs
	Using Unnamed Entry Points
	Using Export Names in Expressions
	Loading Exports Dynamically

	Using the Windows NT family Symbol Files with SoftICE
	Using Windows 9x Symbol (.SYM) Files with SoftICE

	Remote Debugging with SoftICE
	Introduction
	Types of Remote Connections
	DSR Namespace Extension
	Remote Target State Icons

	Remote Debugging Details
	Specialized Network Drivers
	Universal Network Driver
	Serial Connection
	Modem

	SIREMOTE Utility (Host Computer)
	NET Command (Target Computer)

	Customizing SoftICE
	Modifying SoftICE Initialization Settings
	Modifying General Settings
	Initialization
	History Buffer Size
	Trace BufferSize (Windows 9x Only)
	Total RAM (Windows 9x Only)
	Display Diagnostic Messages
	Trap NMI
	Lowercase Disassembly
	Support Power Management
	Headless
	Enable SoftICE Public Interface

	Pre-Loading Symbols and Source Code
	Adding Symbol Files to the Symbols List
	Removing Symbols and Source Code Pre-Loading
	Reserving Symbol Memory

	Pre-Loading Exports
	Serial Debugging
	Configuring Remote Debugging with a Modem

	Configuring Network Debugging
	Requirements for Remote SoftICE Support
	Setting Up SoftICE for Remote Debugging
	Enabling Remote Debugging from the Target Side
	Starting the Remote Debugging Session

	Modifying Keyboard Mappings
	Command Syntax
	Modifying Function Keys
	Creating Function Keys
	Deleting Function Keys
	Restoring Function Keys

	Working with Persistent Macros
	Creating Persistent Macros
	Starting and Stopping Persistent Macros

	Setting Troubleshooting Options
	Disable Mouse Support
	Disable Num Lock and Caps Lock Programming
	Do Not Patch Keyboard Driver (Windows NT family Only)
	Disable Mapping of Non-Present Pages
	Disable Pentium Support
	Disable Thread-Specific Stepping

	Specifying Advanced Options

	Exploring Windows NT
	Overview
	Resources for Advanced Debugging

	Inside the Windows NT Kernel
	Managing the Intel Architecture
	Windows NT System Memory Map

	Win32 Subsystem
	Inside CSRSS
	USER and GDI Objects
	Process Address Space
	Heap API

	Error Messages
	Supported Display Adapters
	Troubleshooting SoftICE
	Kernel Debugger Extensions
	SoftICE and VMware
	OS Support
	Hardware Support
	Setup/Installation
	Limitations and Restrictions
	Remote Debugging
	Configuration
	Mouse
	Universal Video Driver

	SoftICE API Specification
	The Purpose of Having a Public Interface and API
	Setting Up SoftICE for API Access
	Running the Sample Driver
	Setting Up Your Driver
	Checking for the Existence of SoftICE
	Using the SoftICE API
	API Calls from a Driver
	API Calls from a Ring3 Application

	API Definition

	Glossary
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

